Time for 7

7 7 7 7 7 7 7 \Huge {\color{#3D99F6}7}^{{\color{#20A900}7}^{{\color{#D61F06}7}^{{\color{#624F41}7}^{{\color{magenta}7}^{{\color{grey}7}^{\color{#BA33D6}7}}}}}}

Find the last two digits of the number above.


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Curtis Clement
Apr 11, 2015

By using Fermat's little theorem and the prime factorisation of 100: 7 4 1 ( m o d 5 ) 7 4 1 ( m o d 100 ) 7 7 7 3 ( m o d 100 ) 7^4 \equiv 1 \pmod 5 \Rightarrow\ 7^4 \equiv 1 \pmod {100} \Rightarrow\ 7^7 \equiv 7^3 \pmod{100} So this means that: 7 7 7 7 7 7 7 7 3 3 3 3 3 3 ( m o d 100 ) 7^{7^{7^{7^{7^{7^7}}}}} \equiv 7^{3^{3^{3^{3^{3^3}}}}} \pmod{100} Earlier we saw that the exponents produce the same remainder on division of 100 , in cycles of 4 so we need to evaluate: 3 3 3 3 3 3 ( m o d 4 ) 3^{3^{3^{3^{3^3}}}} \pmod{4} Now by testing powers of 3 we can see that: 3 3 3 ( m o d 4 ) 3^3 \equiv 3\pmod{4} 7 3 3 3 3 3 3 7 3 = 343 43 ( m o d 100 ) \therefore\ 7^{3^{3^{3^{3^{3^3}}}}} \equiv 7^3 = 343 \equiv 43 \pmod{100} Hence the answer is 43 \boxed{43} .

Moderator note:

It is not entirely clear how you get 7 4 1 ( m o d 5 ) 7 4 1 ( m o d 100 ) 7^4 \equiv1 \pmod {5} \Rightarrow\ 7^4 \equiv 1 \pmod{100} . It is implied that 7 4 1 ( m o d 100 ) 7^4 \equiv 1 \pmod{100} because you know 7 4 1 ( m o d 5 ) 7^4 \equiv 1 \pmod{5} . How did you make the connection? And can you elaborate further on how you obtain "So this means that: 7 7 7 7 7 7 7 7 3 3 3 3 3 3 m o d ( 100 ) 7^{7^{7^{7^{7^{7^7}}}}} \equiv 7^{3^{3^{3^{3^{3^3}}}}} \ mod(100) "?

I think you mean Fermat's Little Theorem

Yan Yau Cheng - 6 years, 2 months ago

Yes @Curtis Clement , There is a typo. That should be Fermat's Little Theorem. :)

Mehul Arora - 6 years, 2 months ago

The other part is simple

7 4 1 ( m o d 5 ) 7 4 1 ( m o d 25 ) 7^4 \equiv 1 ( \mathrm{mod }~ 5) \\ \Rightarrow 7^4 \equiv 1( \mathrm{mod } ~25)

Now,

( 7 ϕ ( 4 ) ) 2 1 ( m o d 4 ) i.e 7 4 ( m o d 4 ) \left(7^{\phi(4)}\right)^2 \equiv 1 ( \mathrm{mod } ~4)\\ \text{i.e } 7^4 \equiv ( \mathrm{mod } ~4)

Hence,

7 4 1 ( m o d 100 ) 7^4 \equiv 1( \mathrm{mod }~ 100)

Kishore S. Shenoy - 5 years, 9 months ago

I think it should be 07

7^3^3^3^3^3^3 = 7^9^9^9

7^9 equiv to 07 (mod 100)

7^9^9^9 = 7^9 (mod 100)

7^9 \equiv 07 \ (mod 100)

Hence answer is 07

Shyam Agarwal - 5 years, 4 months ago

Log in to reply

in other way

7^7 equiv to 7^3 equiv to 43 (mod 100)

7^7^7 equiv to 7^3^3 = 7^9 equiv to 07 (mod 100)

7^7^7^7 equiv to 43 (mod 100)

and so on

so 7^7^7^7^7^7^7 is equiv to 07

Pls correct the answer

Shyam Agarwal - 5 years, 4 months ago

Use the Clock model and begin with 7^1. 7^1 ends in 7, 7^2 ends in 49.
7^3 ends in 43 So the. 3rd 7 ends in 43. Now, there are six sevens. Since the 6th seven is a multiple of 3, then according to the Clock model , the 6th 7 will also end in 43. Done !

Luis H - 4 years, 10 months ago
Mas Mus
Apr 15, 2015

By Euler's theorem we need to determine the value of exponent 7 7 7 7 7 7 \large{\color{#20A900}7^{\color{#D61F06}7^{\color{#624F41}7^{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}}}} modulo ϕ ( 100 ) = 100 × ( 1 1 2 ) × ( 1 1 5 ) = 40 \phi(100)=100\times\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{5}\right)=40 .

Again, by Euler's theorem we need to determine the value of exponent 7 7 7 7 7 \large{\color{#D61F06}7^{\color{#624F41}7^{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}}} modulo ϕ ( 40 ) = 40 × ( 1 1 2 ) × ( 1 1 5 ) = 16 \phi(40)=40\times\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{5}\right)=16 .

Again, by Euler's theorem we need to determine the value of exponent 7 7 7 7 \large{\color{#624F41}7^{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}} modulo ϕ ( 16 ) = 16 × ( 1 1 2 ) = 8 \phi(16)=16\times\left(1-\frac{1}{2}\right)=8 .

Again, by Euler's theorem we need to determine the value of exponent 7 7 7 \large{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}} modulo ϕ ( 8 ) = 8 × ( 1 1 2 ) = 4 \phi(8)=8\times\left(1-\frac{1}{2}\right)=4 .

Again, by Euler's theorem we need to determine the value of exponent 7 7 \large{\color{grey}7^\color{#BA33D6}7} modulo ϕ ( 4 ) = 4 × ( 1 1 2 ) = 2 \phi(4)=4\times\left(1-\frac{1}{2}\right)=2 .

And, now we have : 7 7 ( 2 × 3 + 1 ) 7 1 ( m o d 2 ) 7 7 7 7 1 3 ( m o d 4 ) 7 7 7 7 7 3 ( 8 × 6 + 1 ) × 7 7 ( m o d 8 ) 7 7 7 7 7 7 7 ( 16 × 3 + 1 ) 3 × 7 7 ( m o d 16 ) 7 7 7 7 7 7 7 7 49 3 × 7 81 × 9 × 7 1 × 63 23 ( m o d 40 ) 7 7 7 7 7 7 7 7 23 ( 100 × 24 + 1 ) 5 × 7 3 43 ( m o d 100 ) \begin{aligned}\large{\color{grey}7^\color{#BA33D6}7}&\equiv\left(2\times3+1\right)^7\equiv1\pmod{2}\\ \large{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}&\equiv\color{magenta}7^{1}\equiv3\pmod{4}\\ \large{\color{#624F41}7^{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}}&\equiv\color{#624F41}7^{3}\equiv\left(8\times{6}+1\right)\times{7}\equiv7\pmod{8}\\ \large{\color{#D61F06}7^{\color{#624F41}7^{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}}}&\equiv\color{#D61F06}7^{7}\equiv\left(16\times{3}+1\right)^{3}\times{7}\equiv7\pmod{16}\\ \large{\color{#20A900}7^{\color{#D61F06}7^{\color{#624F41}7^{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}}}}&\equiv\color{#20A900}7^{7}\equiv{49}^{3}\times{7}\equiv81\times{9}\times{7}\equiv1\times{63}\equiv23\pmod{40}\\ \large{\color{#3D99F6}7^{\color{#20A900}7^{\color{#D61F06}7^{\color{#624F41}7^{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}}}}}&\equiv\large\color{#3D99F6}7^{23}\equiv\left(100\times{24}+1\right)^{5}\times{7^3}\equiv43\pmod{100}\end{aligned} So, the last two digits of 7 7 7 7 7 7 7 \LARGE\color{#3D99F6}7^{\color{#20A900}7^{\color{#D61F06}7^{\color{#624F41}7^{\color{magenta}7^{\color{grey}7^\color{#BA33D6}7}}}}} is 43 43

Moderator note:

Simplest to understand. Well done!

Got that! but can you please explain what was the use of finding those totient functions from 100 and how did you got 7^7^7^7... congruent to 7^7 please reply I need this method to solve a different question and this is the best and easiest method so far thank you

Madhuri Sirola - 6 years, 1 month ago

Log in to reply

Madhuri Sirola : There is a missing step and a typo but I have edited and completed the solution. I hope it is clear now. Please read or read this .

Mas Mus - 6 years, 1 month ago
Majed Khalaf
Apr 11, 2015

The last two digits of 7 make up a series such that it repeats these two last digits all the time: 1) 07 2) 49 3) 43 4) 01 So, to know which one of these pairs appears, you have to only know the last two digits of the number 7^7, so as we know 7 has the following sum:4+3, 4 means that it crossed all the terms and the 3 means that it stopped at the third option which is 43, and since the last two digits of 7^7 are 43, the number shown in the question will have the same two last digits as 43mod4=3, so the last two digits keep coming up, this means that the last two digits of the number shown in the question are 43.

Paulo Juan
Apr 12, 2015

We observe that the order of 7 7 in the multiplicative group Z 100 \mathbb{Z}_{100}^{\ast} is 4 4 . That is, 7 4 1 ( m o d 100 ) 7^4 \equiv 1 (mod\ 100) .

With that fact, the original question What is the remainder when 7 7 7 7 7 7 7 is divided by 100 ? \text{What is the remainder when }7^{7^{7^{7^{7^{7^7}}}}} \text{ is divided by }100? is now reduced to What is the remainder when 7 7 7 7 7 7 is divided by 4 ? \text{What is the remainder when }7^{7^{7^{7^{7^7}}}} \text{is divided by }4?

Since 7 1 ( m o d 4 ) 7 \equiv -1 (mod\ 4) and 7 7 7 7 7 7^{7^{7^{7^7}}} is odd, we have 7 7 7 7 7 7 ( 1 ) 7 7 7 7 7 1 3 ( m o d 4 ) 7^{7^{7^{7^{7^7}}}} \equiv (-1)^{7^{7^{7^{7^7}}}} \equiv -1 \equiv 3\ (mod\ 4)

Let us call the quotient of the above operation q q . That is, 7 7 7 7 7 7 = 4 q + 3 7^{7^{7^{7^{7^7}}}} = 4q + 3 .

So now, 7 7 7 7 7 7 7 = 7 4 q + 3 = ( 7 4 ) q × 7 3 ( 1 ) q × 7 3 7 3 ( m o d 100 ) 7^{7^{7^{7^{7^{7^7}}}}} = 7^{4q+3} = (7^4)^q \times 7^3 \equiv (1)^q \times 7^3 \equiv 7^3 \ (mod\ 100) .

Hence the last two digits of 7 7 7 7 7 7 7 7^{7^{7^{7^{7^{7^7}}}}} is the same as the last two digits of a less scary looking number \textit{a less scary looking number} 7 3 7^3 which is 43 \boxed{43} .

Debashish Saha
Oct 6, 2015

May be simple way to just do 7^7 = 823543 and derive the last two digits.

Aditya Dev
Sep 27, 2015

Nice solution sir....

Ankit Kumar Jain - 5 years, 7 months ago
Marilyn Bretscher
Apr 15, 2015

All congruences will be modulo 100. We will freely use the results 7 3 43 7^3\equiv43 and 7 4 1 7^4\equiv1 . We will show, by induction, that 7 7 7 . . . . 43 7^{7^{7^{....}}}\equiv43 for any power tower of at least two 7s.

First, 7 7 7 3 43 7^7\equiv7^3\equiv43 . If n 43 n\equiv43 , then 7 n = 7 100 m + 43 = ( 7 4 ) 25 m + 10 7 3 43 7^n=7^{100m+43}=(7^4)^{25m+10}7^3\equiv43 .

Please explain the last step

Madhuri Sirola - 6 years, 1 month ago

Log in to reply

In the last step we use that 7 4 1 7^4\equiv1 and 7 3 43 7^3\equiv43 as stated at the beginning (we find those congruences by inspection).

Marilyn Bretscher - 6 years, 1 month ago
Maxon Jack
Feb 14, 2021

I have a question, why did I get 7^(7 7 7 7 7*7) on my calculator and the last two digits are 07

7^(7 7 7 7 7*7)

Maxon Jack - 4 months ago

7^7^7^7^7^7^7

Maxon Jack - 4 months ago
Luis H
Aug 13, 2016

Use the Clock model and begin with 7^1. 7^1 ends in 7, 7^2 ends in 49.
7^3 ends in 43 So the. 3rd 7 ends in 43. Now, there are six sevens. Since the 6th seven is a multiple of 3, then according to the Clock model , the 6th 7 will also end in 43. Done !

Shyam Agarwal
Feb 12, 2016

I think it should be 07

7^3^3^3^3^3^3 = 7^9^9^9

7^9 equiv to 07 (mod 100)

7^9^9^9 = 7^9 (mod 100)

7^9 \equiv 07 \ (mod 100)

Hence answer is 07

in other word

7^7 equiv to 7^3 equiv to 43 (mod 100)

7^7^7 equiv to 7^3^3 = 7^9 equiv to 07 (mod 100)

7^7^7^7 equiv to 43 (mod 100)

and so on

so 7^7^7^7^7^7^7 is equiv to 07

Pls correct the answer

Ankit Kumar Jain
Oct 24, 2015

We observe that 7 4 1 ( m o d 100 ) 7^{4}\equiv1\pmod{100}

Now, 7 1 ( m o d 4 ) 7\equiv-1\pmod4 .

7 7 7 7 7 7 1 3 ( m o d 4 ) \therefore 7^{7^{7^{7^{7^{7}}}}}\equiv-1\equiv3\pmod4 .

7 7 7 7 7 7 7 7 ( 4 k + 3 ) 7 4 k × 7 3 1 7 3 7 3 43 ( m o d 100 ) \Rightarrow 7^{7^{7^{7^{7^{7^{7}}}}}}\equiv{7^{(4k + 3)}}\equiv{7^{4k}}\times{7^3}\equiv{1 \cdot 7^3}\equiv7^3\equiv43\pmod{100} .

Moderator note:

Good usage of 7 4 7^4 to simplify the work to be done.

Ubaidullah Khan
Apr 16, 2015

Always there are common pattern that can be observed while writing the answer for the exponent series of 7. The common last 2 digits were found as 43. hence the answer is 43

Terry Smith
Apr 14, 2015

2 lines of Ruby

a=(1..7).to a.permutation.to a.map(&:join).map(&:to_i)

puts a.select{|l|l % 5 != 0}.sort[1999]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...