Time for some general integrals:

Calculus Level 3

0 x k 1 + x n d x = ? \large \int\limits_{0}^{\infty} \frac{x^k}{1+x^n} \, dx = \, ?

for: k , n Z k,n \in \mathbb{Z} and 0 k n 2 0 \le k \le n-2

EDIT: The The π \pi s of the suggested answers in the denominator are supposed to be inside the s i n ( ) sin( * )

π n sin ( k + 1 n ) π \frac{\sqrt{\pi}}{n\sin(\frac{k+1}{n}) \pi} π n sin ( k + 1 n ) π \frac{\pi}{n\sin(\frac{k+1}{n}) \pi} k n + 1 \frac{k}{n+1} π ( 2 k + 1 ) sin ( n 2 k + 1 ) π \frac{\pi}{(2 k+1) \sin(\frac{n}{2 k+1}) \pi} n π sin ( k + 1 n ) π \frac{n \pi}{\sin(\frac{k+1}{n}) \pi} n 2 sin ( k + 1 n ) \frac{n}{2 \sin(\frac{k+1}{n})}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Substitute x = t 1 n \displaystyle x=t^{\frac{1}{n}} to get 1 n B ( k + 1 n , 1 k + 1 n ) = π n sin ( π ( k + 1 ) n ) \displaystyle \frac{1}{n}\Beta\left(\frac{k+1}{n},1-\frac{k+1}{n}\right) = \frac{\pi}{n\sin\left(\frac{\pi(k+1)}{n}\right)}

Here B ( x , y ) \Beta(x,y) denotes the Beta Function .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...