Time = D i s t a n c e S p e e d \frac{Distance}{Speed} , right??

A particle P P is initially at a distance of d = 16 m d = 16 m from point O O . The particle P P moves with a velocity given by
v = 5 P O + 3 i ^ \overrightarrow{v} = 5 \overrightarrow{PO} + 3\hat{i}
where P O \overrightarrow{PO} is a unit vector from P P to O O at any time t.

Initially P O \overrightarrow{PO} is perpendicular to i ^ \hat{i} .

Find the time in second after which point P P meets point O O .

Details and Assumptions:

i ^ \hat{i} is unit vector along the direction of x-axis.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aryaman Maithani
Jun 30, 2018

Even though not stated, O O can be taken to be the origin without any loss of generality. The initial position of P P can be taken as ( 0 , 16 ) (0, 16) . (It can also be taken as ( 0 , 16 ) (0, -16) , both of which will give the same answer.)

Let the position of the point at any time t t be r = x i ^ + y j ^ \overrightarrow{r} = x \hat{i} + y \hat{j} . This gives that P O = x i ^ y j ^ \overrightarrow{PO} = - x \hat{i} - y \hat{j} and the unit vector will be x i ^ x 2 + y 2 y j ^ x 2 + y 2 -\dfrac{x \hat{i}}{\sqrt{x^2+y^2}} - \dfrac{y \hat{j}}{\sqrt{x^2+y^2}} .

v = 5 ( x i ^ x 2 + y 2 y j ^ x 2 + y 2 ) + 3 i ^ \therefore \overrightarrow{v} = 5 \Bigg(-\dfrac{x \hat{i}}{\sqrt{x^2+y^2}} - \dfrac{y \hat{j}}{\sqrt{x^2+y^2}}\Bigg) + 3\hat{i}

v = ( 5 x x 2 + y 2 + 3 ) i ^ + ( 5 y x 2 + y 2 ) j ^ \implies \overrightarrow{v} = \Bigg(\dfrac{-5x}{\sqrt{x^2+y^2}}\ + 3\Bigg)\hat{i} + \Bigg(\dfrac{-5y}{\sqrt{x^2+y^2}}\Bigg)\hat{j}

Using the definition of velocity, v = d x d t i ^ + d y d t j ^ \overrightarrow{v} = \dfrac{dx}{dt}\hat{i} + \dfrac{dy}{dt}\hat{j}

d x d t = 5 x x 2 + y 2 + 3 ( 1 ) \dfrac{dx}{dt} = \dfrac{-5x}{\sqrt{x^2+y^2}}\ + 3 \hspace{3 cm} (1)

d y d t = 5 y x 2 + y 2 ( 2 ) \dfrac{dy}{dt} = \dfrac{-5y}{\sqrt{x^2+y^2}} \hspace{3.7 cm} (2)

Diving ( 1 ) (1) by ( 2 ) (2) :

d x d y = 5 x 3 x 2 + y 2 5 y = x y 3 5 1 + ( x y ) 2 \dfrac{dx}{dy} = \dfrac{5x - 3\sqrt{x^2 + y^2}}{5y} = \dfrac{x}{y} - \dfrac{3}{5}\sqrt{1+\Bigg(\dfrac{x}{y}\Bigg)^2}

Using the substitution: x = u y d x d y = u + y d u d y x = uy \implies \frac{dx}{dy} = u + y\frac{du}{dy} :

u + y d u d y = u 3 5 1 + u 2 u + y\dfrac{du}{dy} = u - \dfrac{3}{5}\sqrt{1 + u^2}

d u 1 + u 2 = 3 5 d y y \implies \dfrac{du}{\sqrt{1+u^2}} = -\dfrac{3}{5} \dfrac{dy}{y}

Integrating both sides:

ln ( 1 + u 2 + u ) = 3 5 ln ( y ) + C \ln(\sqrt{1+u^2} + u) = -\dfrac{3}{5}\ln(y) + C

Using initial conditition of x = 0 x = 0 when y = 16 y=16 , C C can be found to be equal to 3 5 ln ( 16 ) \dfrac{3}{5}\ln(16)

ln ( 1 + u 2 + u ) = 3 5 ln ( y 16 ) \therefore \ln(\sqrt{1+u^2} + u) = -\dfrac{3}{5}\ln\bigg(\dfrac{y}{16}\bigg)

Taking anti-log:

1 + u 2 + u = ( y 16 ) 3 5 ( 3 ) \sqrt{1+u^2} + u = \bigg(\dfrac{y}{16}\bigg)^{-\dfrac{3}{5}} \hspace{3 cm} (3)

1 + u 2 u = ( y 16 ) 3 5 ( 4 ) ( Using the fact that ( 1 + u 2 + u ) ( 1 + u 2 u ) = 1 \sqrt{1+u^2} - u = \bigg(\dfrac{y}{16}\bigg)^{\dfrac{3}{5}} \hspace{3.1 cm} (4) \hspace{3 cm} (\text{Using the fact that }(\sqrt{1+u^2} + u)(\sqrt{1+u^2} - u) = 1

Adding the two:

1 + u 2 = 1 2 [ ( y 16 ) 3 5 + ( y 16 ) 3 5 ] \sqrt{1+u^2} = \dfrac{1}{2} \Bigg[\bigg(\dfrac{y}{16}\bigg)^{-\dfrac{3}{5}}+ \bigg(\dfrac{y}{16}\bigg)^{\dfrac{3}{5}} \Bigg]

x 2 + y 2 y = 1 2 [ ( y 16 ) 3 5 + ( y 16 ) 3 5 ] \implies \dfrac{\sqrt{x^2+y^2}}{y} = \dfrac{1}{2} \Bigg[\bigg(\dfrac{y}{16}\bigg)^{-\dfrac{3}{5}}+ \bigg(\dfrac{y}{16}\bigg)^{\dfrac{3}{5}} \Bigg]

Subsituting the above in ( 2 ) (2) :

1 2 [ ( y 16 ) 3 5 + ( y 16 ) 3 5 ] = 5 d t d y \dfrac{1}{2} \Bigg[\bigg(\dfrac{y}{16}\bigg)^{-\dfrac{3}{5}}+ \bigg(\dfrac{y}{16}\bigg)^{\dfrac{3}{5}} \Bigg] = -5\dfrac{dt}{dy}

1 2 16 0 [ ( y 16 ) 3 5 + ( y 16 ) 3 5 ] d y = 5 0 T d t \implies\dfrac{1}{2} \displaystyle\int_{16}^{0} \Bigg[\bigg(\dfrac{y}{16}\bigg)^{-\dfrac{3}{5}}+ \bigg(\dfrac{y}{16}\bigg)^{\dfrac{3}{5}} \Bigg] dy = -5 \displaystyle\int_{0}^{T} dt

1 2 [ 16 1 2 5 ( y 16 ) 2 5 + 16 1 8 5 ( y 16 ) 8 5 ] 16 0 = 5 T \implies\dfrac{1}{2} \Bigg[16\dfrac{1}{\frac{2}{5}}\bigg(\dfrac{y}{16}\bigg)^{\dfrac{2}{5}}+ 16\dfrac{1}{\frac{8}{5}}\bigg(\dfrac{y}{16}\bigg)^{\dfrac{8}{5}} \Bigg]_{16}^{0}= -5 T

5 2 [ 16 1 2 ( 1 ) + 16 1 8 ( 1 ) ] = 5 T \implies\dfrac{5}{2} \Bigg[16\dfrac{1}{2}(-1)+ 16\dfrac{1}{8}(-1) \Bigg]= -5 T

T = 5 \implies T = \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...