Time period of oscillations of a particle revolving in a paraboloid

Consider a vertical paraboloid y = r 2 y = r^2 . A small particle kept on its smooth inner surface at y 0 = 1 m y_{0} = 1 m is given an angular velocity of ω = ω 0 ( 1 + η ) \omega = \omega_{0}(1+ \eta) , where η < < 1 \eta <<1 , and ω 0 = 19.62 rad / s 2 \omega_{0} = \sqrt{19.62} \text{rad}/s^2 . It has no vertical velocity initially.

Find the time period of its vertical oscillations in seconds \text{ seconds } . Assume g = 9.81 m / s 2 g = 9.81 m/s^2 .

Hint : Use conservation of angular momentum and conservation of energy. Afterwards, use approximations in your integral ( η < < 1 \eta<<1 )

Sorry for not posting problems for a long time. Hope you enjoy!


The answer is 1.586.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jatin Yadav
Sep 15, 2014

Clearly, if initially the angular velocity was ω 0 \omega_{0} , then there would have been no vertical motion, as the components of normal reaction would have balanced both weight and centrietal force.

When , ω = ω 0 ( 1 + η ) \omega = \omega_{0}(1+ \eta) , the particle will initially go up, and then after a certain height it will come down.

Consider the instant when the particle is at a height y y has angular velocity ω \omega , and a velocity along the surface v v

By conservation of angular momentum,

ω r 2 = ω 0 ( 1 + η ) r 0 2 \omega r^2 = \omega_{0}(1+\eta) r_{0}^2

ω y = ω 0 ( 1 + η ) y 0 \Rightarrow \omega y = \omega_{0}(1+\eta)y_{0}

ω = ω 0 ( 1 + η ) y 0 y \Rightarrow \omega = \omega_{0}(1+\eta)\dfrac{y_{0}}{y}

By using conservation of mechanical energy,

1 2 m ω 0 2 ( 1 + η ) 2 r 0 2 1 2 m ( ω 2 r 2 + v 2 ) = m g ( y y 0 ) \dfrac{1}{2}m\omega_{0}^2(1+\eta)^2r_{0}^2 - \dfrac{1}{2} m (\omega^2r^2 + v^2) = mg(y-y_{0})

Using ( 1 + η ) 2 1 + 2 η (1+\eta)^2 \approx 1+2\eta

ω 0 2 ( 1 + 2 η ) y 0 ( ω 2 y + v 2 ) = 2 g ( y y 0 ) \omega_{0}^2(1+2\eta) y_{0} - (\omega^2y + v^2) = 2g(y-y_{0})

Eliminating ω \omega from the two equations, we get

v = ( ω 0 2 ( 1 + 2 η ) y 0 2 g y ) ( y y 0 ) y \displaystyle v = \sqrt{\dfrac{(\omega_{0}^2(1+2 \eta)y_{0} - 2gy)(y-y_{0})}{y}}

Using ω 0 2 = 2 g \omega_{0}^2 = 2g , y 0 = 1 y_{0} = 1

v = 2 g ( 1 + 2 η y ) ( y y 0 ) y v = \displaystyle \sqrt{\dfrac{2g(1+ 2 \eta - y)(y-y_{0})}{y}}

At the highest point, v = 0 v = 0 , hence

y = 1 + 2 η y = 1+2\eta

Slope, t a n θ = d y d r = 2 r = 2 y tan \theta = \dfrac{dy}{dr} = 2r = 2\sqrt{y}

Hence, v y = v sin θ = v × 2 y 1 + 4 y = 8 g ( 1 + 2 η y ) ( y 1 ) 1 + 4 y v_{y} = v \sin \theta = v \times \dfrac{2 \sqrt{y}}{\sqrt{1+4y}} = \displaystyle \displaystyle \sqrt{\dfrac{8g(1+ 2 \eta - y)(y-1)}{1+4y}}

Hence, d y d t = 8 g ( 1 + 2 η y ) ( y 1 ) 1 + 4 y \dfrac{dy}{dt} = \displaystyle \displaystyle \sqrt{\dfrac{8g(1+ 2 \eta - y)(y-1)}{1+4y}}

Hence, 1 2 2 g 1 1 + 2 η 1 + 4 y ( 1 + 2 η y ) ( y 1 ) d y = 0 T / 2 d t \displaystyle \dfrac{1}{2 \sqrt{2g}} \int_{1}^{1+ 2\eta} \sqrt{\dfrac{1+4y}{(1+2\eta-y)(y-1)}} { \mathrm dy} = \int_{0}^{T/2} dt

Putting y 1 = z y-1 = z ,

T 2 = 1 2 2 g 0 2 η 5 + 4 z 2 η z z 2 d z \dfrac{T}{2} = \dfrac{1}{2 \sqrt{2g} }\displaystyle \int_{0}^{2 \eta} \sqrt{\dfrac{5+4z}{2 \eta z - z^2}} dz

Now, as z z is very small, 5 + 4 z 5 \sqrt{5+4z} \approx \sqrt{5}

Hence, T 2 = 5 2 2 g 0 2 η 1 η 2 ( z η ) 2 d z \dfrac{T}{2} = \dfrac{\sqrt{5}}{2 \sqrt{2g}} \displaystyle \int_{0}^{2 \eta} \dfrac{1}{ \eta^2 - (z -\eta)^2} dz

Hence, T = π 5 2 g \boxed{T = \pi \sqrt{\frac{5}{2g}}}

Jatin, please tell that what ranks you used to get in VMC's mains and advanced.

Karan Siwach - 6 years, 9 months ago
Saran Prembabu
Oct 15, 2014

Instead of having a small perturbation in the angular velocity at a known radius, we could instead have a small perturbation in the radius at a known angular velocity and get the same answer. Therefore, let the initial angular velocity be exactly ω 0 \omega_0

First, we determine that the potential energy is m g r 2 mgr^2 , and the kinetic energy is 1 2 m v 2 = 1 2 m ( r ˙ 2 + r 2 θ ˙ 2 + 4 r 2 r ˙ 2 ) \frac { 1 }{ 2 } mv^{ 2 }=\frac { 1 }{ 2 } m(\dot { r } ^2 +r^2\dot{\theta}^2+4r^2\dot{r}^2) , so the Lagrangian is L = 1 2 m ( r ˙ 2 + r 2 θ ˙ 2 + 4 r 2 r ˙ 2 ) m g 2 L=\frac { 1 }{ 2 } m(\dot { r } ^2 +r^2\dot{\theta}^2+4r^2\dot{r}^2) -mg^2 , where θ \theta is the angular position.

Using the Euler-Lagrange Equations, L θ = 0 = d d t L θ ˙ = d d t m r 2 θ ˙ m r 2 θ ˙ = m r 2 ω 0 = l \frac { \partial L }{ \partial \theta } = 0 = \frac{d}{dt}\frac{\partial L}{\partial\dot{\theta}}= \frac{d}{dt}mr^2\dot{\theta} \Rightarrow mr^2\dot{\theta}=mr^2\omega_0=l and L r = m r θ ˙ 2 + 4 m r r ˙ 2 2 m g r = d d t L r ˙ = d d t ( m r ˙ + 4 m r 2 r ˙ ) l m r 3 2 m g r = m r ¨ + 4 m r r ˙ 2 + 4 m r 2 r ¨ \frac { \partial L }{ \partial r } =mr\dot { \theta } ^{ 2 }+4mr\dot { r } ^{ 2 }-2mgr=\frac { d }{ dt } \frac { \partial L }{ \partial \dot { r } } =\frac { d }{ dt } (m\dot { r } +4mr^{ 2 }\dot { r } )\Rightarrow \frac { l }{ mr^{ 3 } } -2mgr=m\ddot { r } +4mr\dot { r } ^{ 2 }+4mr^{ 2 }\ddot { r }

We substitute r r with r 0 ( 1 + a ) r_0(1+a) , where r 0 = 1 r_0 = 1 and a 1 a \ll 1 function of time. (Note that, based on the way we changed the problem statement, a 0 a\neq 0 initially). Also, l 2 m r 0 3 = 2 m g r 0 \frac{l^2}{mr_0^3} = 2mgr_0

The differential equation then becomes l m r 0 3 ( 1 + a ) 3 2 m g r 0 ( 1 + a ) = m r 0 a ¨ + 4 m r 0 3 a ˙ 2 + 4 m r 0 3 a ¨ \frac { l }{ mr_0^{ 3 } }(1+a)^{-3} -2mgr_0(1+a)=mr_0\ddot {a} +4mr_0^3\dot { a } ^{ 2 }+4mr_0^{3 }\ddot { a }

Since a 1 a \ll 1 , for a first-order-approximation simple harmonic oscillation, a ˙ 2 a ¨ \dot{a}^2 \ll \ddot{a} , so we simplify to 3 l m r 0 3 a 2 m g r 0 a = m r 0 a ¨ + 4 m r 3 a ¨ -3\frac { l }{ mr_0^{ 3 } }a -2mgr_0a=mr_0\ddot {a} +4mr^{3 }\ddot { a } .

Therefore, if ω y \omega_y is the angular frequency of vertical oscillations, ω y 2 = a ¨ a = 6 m g r 0 + 2 m g r 0 m r 0 + 4 m r 0 3 = 8 g 5 \omega_y^2 = -\frac{\ddot{a}}{a} = \frac{6mgr_0+2mgr_0}{mr_0+4mr_0^3} = \frac{8g}{5} . The period in seconds is then calculated as 2 π ω y \frac{2\pi}{\omega_y} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...