Times

Algebra Level 3

x 256 16 x 16 + 16 \large x^{256} - 16x^{16} + 16

What is the minimum value of the expression above? Can you generalize it?


This is part of the series: " It's easy, believe me! "


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let x 16 = y x^{16} = y

Using this substitution, the above expression can be wriitten as \text{Using this substitution, the above expression can be wriitten as} :

y 16 16 y + 16 y^{16} - 16y + 16

Differentiating the above expression we get \text{Differentiating the above expression we get} :

16 y 5 16 16y^{5} - 16

Clearly , the function is increasing for y>1 and decreasing for y<1. Hence the minima occurs at y = 1 or better to say , x = 1 \text{Clearly , the function is increasing for y>1 and decreasing for y<1. Hence the minima occurs at y = 1 or better to say , x = 1}

Putting the value , we get the minimum value of the expression as \text{Putting the value , we get the minimum value of the expression as} ,

1 16 + 16 = 1 1 - 16 + 16 = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...