n = 1 ∑ ∞ ( n ζ ( 2 n ) − 2 n 1 − 2 n + 1 1 )
Find the value of the closed form of the above series.
Give your answer to 1 decimal place.
Notation : ζ ( ⋅ ) denotes the Riemann zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Normal standard approach +2
SInce, k = 2 ∑ ∞ ζ ( k ) x k − 1 = − ψ ( 1 − x ) − γ so we can derive k = 1 ∑ ∞ ζ ( 2 k ) x 2 k − 1 = 2 1 ( ψ ( 1 + x ) − ψ ( 1 − x ) ) , Set x 2 → x and divide throughout by x ,
k = 1 ∑ ζ ( 2 k ) x k − 1 = 2 x 1 ( ψ ( 1 + x ) − ψ ( 1 − x ) )
Since, 2 n 1 = ∫ 0 1 x 2 n − 1 d x , 2 n + 1 1 = ∫ 0 1 x 2 n d x and summing this the desired sum in integral representaion would be , S = ∫ 0 1 ψ ( 1 + x ) − ψ ( 1 − x ) + 1 − 1 − x 1 d x
Now ∫ 0 1 ψ ( 1 + x ) d x = [ ln Γ ( 1 + x ) ] 0 1 = 0 , ∫ 0 1 ( ψ ( 1 − x ) + 1 − x 1 ) d x = [ ln ( Γ ( 1 − x ) ( 1 − x ) ) ] 0 1 = 0 as x → 1 lim ( 1 − x ) Γ ( 1 − x ) = 1
We are only left with S = 1
When you set x 2 → x , why doesn't x become x in the arguments of ψ ? i.e. It should be: k = 1 ∑ ∞ ζ ( 2 k ) x k − 1 = 2 x 1 ( ψ ( 1 + x ) − ψ ( 1 − x ) )
Problem Loading...
Note Loading...
Set Loading...
n = 1 ∑ ∞ n ζ ( 2 n ) − 1 n = 1 ∑ ∞ n ζ ( 2 n ) − 1 = = = = = = = n = 1 ∑ ∞ n 1 k = 2 ∑ ∞ k 2 n 1 k = 2 ∑ ∞ n = 1 ∑ ∞ n 1 ( k 2 1 ) n k = 2 ∑ ∞ − ln ( 1 − k 2 1 ) k = 2 ∑ ∞ ln ( ( k − 1 ) ( k + 1 ) k 2 ) m → ∞ lim ln ( k = 2 ∏ m ( k − 1 ) ( k + 1 ) k 2 ) m → ∞ lim ln ( m + 1 2 m ) ln ( 2 ) [ A ]
On the other hand,
n = 1 ∑ ∞ ( 2 n 1 − 2 n + 1 1 ) = = = m = 2 ∑ ∞ m ( − 1 ) m 1 − m = 1 ∑ ∞ m ( − 1 ) m + 1 1 − ln ( 2 ) [ B ]
Therefore, adding equations ( A ) and ( B ) gives us:
n = 1 ∑ ∞ ( n ζ ( 2 n ) − 2 n 1 − 2 n + 1 1 ) = 1