(Don’t) \tiny{^\text{(Don't)}} Use L'Hopital to solve this

Calculus Level 4

lim x x ( A x ( B x ( C ( 1 + 1 x ) x ) ) ) \lim_{x\to \infty} x \left( A-x \left( B-x \left( C-\left( 1+\frac1x\right)^x \right) \right) \right) If the above limit exists, and it equals a b × e \dfrac ab\times e , where a a and b b are coprime positive integers, then find a + b a+b .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

C Anshul
Jul 11, 2018

H i n t s : Hints:

Firstly put t = 1 x t=\frac{1}{x} Then simplify.

Use taylor series of ( 1 + x ) 1 x = e ( 1 x 2 + 11 24 x 2 7 16 x 3 . . . . . . . ) (1+x)^{\frac{1}{x}}=e(1-\frac{x}{2}+\frac{11}{24}x^{2}-\frac{7}{16}x^{3}.......)

After simplifying limit u will observe that our limit is just negative of coefficient of x 3 x^{3} .

So a = 7 , b = 16 a=7,b=16 .

To find taylor series: e l n ( 1 + x ) / x = e 1 1 2 x + 1 3 x 2 . . . . = e ( e x / 2 ) ( e x 2 / 3 ) . . . . . e^{ln(1+x)/x}=e^{1-\frac{1}{2}x+\frac{1}{3}x^{2}....}=e(e^{-x/2})(e^{x^{2}/3}).....

Now use series of e x / 2 e^{-x/2} and e x 2 / 3 e^{x^{2}/3} .

Nice solution

Jitender Sharma - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...