To 306 followers! (Corrected)

Calculus Level 5

1 1 x 2 ( ( d d x cos 1 ( cos ( x π ) ) ) + π 2 π ) d x = A \int _{ 1 }^{ \infty }{ \frac { 1 }{ x^{ 2 } } \left( \frac {( \frac { d }{ dx } \cos ^{ -1 } \left( \cos \left( x\pi \right) \right)) +\pi}{ 2 \pi } \right) } dx=A

Given the above equation, find 1000 A \left\lfloor 1000A \right\rfloor .

Note: Sorry to those few who attempted the previous problem that I posted. The answer was wrong so I have posted a new problem.
Try my Other Problems .


The answer is 306.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Of course, everyone's first try will be: 306 \boxed{306} .

A = 1 1 x 2 ( ( d d x cos 1 ( cos ( x π ) ) ) + π 2 π ) d x d d x cos 1 ( cos ( x π ) ) = π sin x π sin x π A = 1 1 x 2 ( sin x π sin x π + 1 2 ) d x sin x π sin x π = 1 2 n < x < ( 2 n + 1 ) a n d sin x π sin x π = 1 ( 2 n + 1 ) < x < 2 ( n + 1 ) A = i = 1 2 i 2 i + 1 1 x 2 d x A = 1 2 1 3 + 1 4 1 5 + 1 6 . . . C o n s i d e r : t 1 + t = t t 2 + t 3 t 4 + t 5 . . . ( s u m o f G . P ) 0 1 t 1 + t d t = 0 1 ( t t 2 + t 3 t 4 + t 5 . . . ) d t = 1 2 1 3 + 1 4 1 5 + 1 6 . . . b u t 0 1 t 1 + t d t = 0 1 1 1 1 + t d t = 1 log 2 A = 1 log 2 0.3068 1000 A = 306 A=\int _{ 1 }^{ \infty }{ \frac { 1 }{ x^{ 2 } } \left( \frac { (\frac { d }{ dx } \cos ^{ -1 } \left( \cos \left( x\pi \right) \right) )+\pi }{ 2\pi } \right) } dx\\ \frac { d }{ dx } \cos ^{ -1 } \left( \cos \left( x\pi \right) \right) =\frac { \pi \sin { x\pi } }{ |\sin { x\pi } | } \\ \Rightarrow A=\int _{ 1 }^{ \infty }{ \frac { 1 }{ x^{ 2 } } \left( \frac { \frac { \sin { x\pi } }{ |\sin { x\pi } | } +1 }{ 2 } \right) } dx\\ \because \frac { \sin { x\pi } }{ |\sin { x\pi } | } =1\quad \forall \quad 2n<x<(2n+1)\quad and\\ \frac { \sin { x\pi } }{ |\sin { x\pi } | } =-1\quad \forall \quad (2n+1)<x<2(n+1)\\ \Rightarrow A=\sum _{ i=1 }^{ \infty }{ \int _{ 2i }^{ 2i+1 }{ \frac { 1 }{ x^{ 2 } } dx } } \\ \Rightarrow A=\frac { 1 }{ 2 } -\frac { 1 }{ 3 } +\frac { 1 }{ 4 } -\frac { 1 }{ 5 } +\frac { 1 }{ 6 } -...\\ Consider:\quad \frac { t }{ 1+t } =t-{ t }^{ 2 }+{ t }^{ 3 }-{ t }^{ 4 }+{ t }^{ 5 }-...\quad (sum\quad of\quad G.P)\\ \Rightarrow \int _{ 0 }^{ 1 }{ \frac { t }{ 1+t } dt } =\int _{ 0 }^{ 1 }{ (t-{ t }^{ 2 }+{ t }^{ 3 }-{ t }^{ 4 }+{ t }^{ 5 }-...)dt } =\frac { 1 }{ 2 } -\frac { 1 }{ 3 } +\frac { 1 }{ 4 } -\frac { 1 }{ 5 } +\frac { 1 }{ 6 } -...\\ but\int _{ 0 }^{ 1 }{ \frac { t }{ 1+t } dt } =\int _{ 0 }^{ 1 }{ 1-\frac { 1 }{ 1+t } dt } =1-\log { 2 } \\ \Rightarrow A=1-\log { 2 } \approx 0.3068\\ \Rightarrow \left\lfloor 1000A \right\rfloor =\boxed { 306 }

noooooooooooooooo............................

Julian Poon - 6 years, 2 months ago

Log in to reply

I'll post actual solution also.. don't worry.

Raghav Vaidyanathan - 6 years, 2 months ago

The moment I saw that the question had an unconventional number "306"(not 300 or a multiple of 50) , I felt that I had to try my luck and ....

But you are one great genius , dude . How could you manipulate your question to the desired answer or were you waiting for your followers to get to 306 to post this question ? :P

A Former Brilliant Member - 6 years, 1 month ago

Log in to reply

I did not, I just got something close to 300 and then waited for the moment :P

Julian Poon - 6 years, 1 month ago

Same observation lead to the same guess! I think this is the first such problem I've seen which is not addressed to -- 0 0 followers...

User 123 - 6 years ago

@Julian Poon Sorry Sir, but I just couldn't resist guessing the answer.

User 123 - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...