To enjoy the geometra

Geometry Level 2

The figure below shows a right triangle A B C ABC with A = 9 0 \angle A = 90^\circ , B = 3 0 \angle B = 30^\circ and C = 6 0 \angle C = 60^\circ . A D AD is a bisector of A \angle A , B E BE is a bisector of B \angle B . If B E A D = n \dfrac {BE}{AD} = n , where n n is a positive integer, find n n ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 31, 2017

We note that A D B = C A D + A C B = 4 5 + 6 0 = 10 5 \angle ADB = \angle CAD + \angle ACB = 45^\circ + 60^\circ = 105^\circ . Using sine rule , A D A B = sin 3 0 sin 10 5 \dfrac {AD}{AB} = \dfrac {\sin 30^\circ}{\sin 105^\circ} A D = sin 3 0 sin 10 5 A B \implies AD = \dfrac {\sin 30^\circ}{\sin 105^\circ} AB . We note that A B B E = cos 1 5 \dfrac {AB}{BE} = \cos 15^\circ B E = A B cos 1 5 \implies BE = \dfrac {AB}{\cos 15^\circ} . Therefore,

B E A D = sin 10 5 sin 3 0 cos 1 5 = cos ( 9 0 10 5 ) sin 3 0 cos 1 5 = cos ( 1 5 ) sin 3 0 cos 1 5 = cos 1 5 sin 3 0 cos 1 5 = 1 sin 3 0 = 2 \begin{aligned} \frac {BE}{AD} & = \frac {\sin 105^\circ}{\sin 30^\circ \cos 15^\circ} \\ & = \frac {\cos (90^\circ - 105^\circ)}{\sin 30^\circ \cos 15^\circ} \\ & = \frac {\cos (- 15^\circ)}{\sin 30^\circ \cos 15^\circ} \\ & = \frac {\cos 15^\circ}{\sin 30^\circ \cos 15^\circ} \\ & = \frac 1{\sin 30^\circ} \\ & = \boxed{2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...