TO INFINITY AND BEYOND!

Algebra Level pending

I f n = 1 ( 1 2 ) n cos 2 n π 3 c a n b e e x p r e s s e d i n t h e f o r m a b w h e r e a a n d b a r e r e l a t i v e l y p r i m e i n t e g e r s , w h a t i s a + b ? If\quad \sum _{ n=1 }^{ \infty }{ { \left( \frac { 1 }{ 2 } \right) }^{ n }\cos { \frac { 2n\pi }{ 3 } } \quad } can\quad be\quad expressed\\ in\quad the\quad form\quad -\frac { a }{ b } \quad where\quad a\quad and\quad b\quad are\quad \\ relatively\quad prime\quad integers,\quad what\quad is\quad a+b?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Justin Tuazon
Dec 30, 2014

n = 1 ( 1 2 ) n cos 2 n π 3 = cos 2 π 3 2 + cos 4 π 3 2 2 + cos 2 π 2 3 + cos 8 π 3 2 4 + . . . = 1 2 ( 1 2 ) + 1 2 2 ( 1 2 ) + 1 2 3 + 1 2 4 ( 1 2 ) + 1 2 5 ( 1 2 ) + 1 2 6 + . . . = ( 1 4 ) ( 1 + 1 2 3 + 1 2 6 + . . . ) = ( 1 4 ) ( 1 1 1 8 ) = 2 7 a = 2 , b = 7 a + b = 9 \sum _{ n=1 }^{ \infty }{ { \left( \frac { 1 }{ 2 } \right) }^{ n }\cos { \frac { 2n\pi }{ 3 } } } \\ =\frac { \cos { \frac { 2\pi }{ 3 } } }{ 2 } +\frac { \cos { \frac { 4\pi }{ 3 } } }{ { 2 }^{ 2 } } +\frac { \cos { 2\pi } }{ { 2 }^{ 3 } } +\frac { \cos { \frac { 8\pi }{ 3 } } }{ { 2 }^{ 4 } } +...\\ =\frac { 1 }{ 2 } \left( -\frac { 1 }{ 2 } \right) +\frac { 1 }{ { 2 }^{ 2 } } \left( -\frac { 1 }{ 2 } \right) +\frac { 1 }{ { 2 }^{ 3 } } +\frac { 1 }{ { 2 }^{ 4 } } \left( -\frac { 1 }{ 2 } \right) +\frac { 1 }{ { 2 }^{ 5 } } \left( -\frac { 1 }{ 2 } \right) +\frac { 1 }{ { 2 }^{ 6 } } +...\\ =\left( \frac { -1 }{ 4 } \right) \left( 1+\frac { 1 }{ { 2 }^{ 3 } } +\frac { 1 }{ { 2 }^{ 6 } } +... \right) \\ =\left( \frac { -1 }{ 4 } \right) \left( \frac { 1 }{ 1-\frac { 1 }{ 8 } } \right) =-\frac { 2 }{ 7 } \\ a=2,\quad b=7\\ \\ \therefore \quad a+b=9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...