Almost Like A Factorial Denominator

Algebra Level 4

4 1 2 3 + 5 2 3 4 + 6 3 4 5 + = ? \dfrac4{1\cdot2\cdot3} + \dfrac5{2\cdot3\cdot4} + \dfrac6{3\cdot4\cdot5} + \cdots = \, ?


The answer is 1.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 27, 2016

S = n = 1 n + 3 n ( n + 1 ) ( n + 2 ) \large S=\displaystyle \sum_{n=1}^{\infty} \dfrac{n+3}{n(n+1)(n+2)} = n = 1 ( n + 1 ) ( n + 2 ) + n = 1 3 n ( n + 1 ) ( n + 2 ) =\displaystyle \sum_{n=1}^{\infty} \dfrac{\not n}{\not n(n+1)(n+2)}+\displaystyle \sum_{n=1}^{\infty} \dfrac{3}{n(n+1)(n+2)} ( n = 1 ( 1 n + 1 1 n + 2 ) ) + ( 3 2 ( n = 1 1 n ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) ) ) ( B o t h a r e T e l e s c o p i c S e r i e s ) (\displaystyle \sum_{n=1}^{\infty} (\dfrac{1}{n+1}- \dfrac{1}{n+2}))~~+(\dfrac{3}{2}~(\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n(n+1)}-\dfrac{1}{(n+1)(n+2)}))\\~~~~\color{goldenrod}{(Both ~are~Telescopic~Series)} = 1 2 + 3 4 = 1.25 =\large \dfrac{1}{2}+\dfrac{3}{4}=\boxed{\color{#D61F06}{\boxed {1.25}}}

f ( n ) = 1 n + 3 n ( n + 1 ) ( n + 2 ) = 1 2 ( n + 2 ) ( n + 1 ) ( n ( n + 1 ) ( n + 2 ) f ( n ) = 1 2 n ( n + 1 ) 1 1 ( n ( n + 2 ) . 2 n ( n + 1 ) = A n + B n + 1 a n d 1 n ( n + 2 ) = C n + D n + 2 . Solving for A, B, C, D, and combining A and C f ( n ) = 3 2 1 1 n + 1 2 1 1 n + 2 2 1 1 n + 1 We could obtain partial fractions directly by solving 3 equations in three unknowns. But here we have split into two sets of 2 equations in 2 unknowns, I felt that is easy. A l s o r e f r e s h : n = a b f ( n ) = n = a c b c f ( n + c ) , o u r b = . f ( n ) = 3 2 n = 1 1 n + 1 2 n = 3 1 n 2 n = 2 1 n 3 2 n = 1 2 1 n + 3 2 n = 3 1 n + 1 2 n = 3 1 n 2 n = 2 2 1 n 2 n = 3 1 n In telescoping series f(n) the only terms those does not cancel out are 3 2 n = 1 2 1 n 2 n = 2 2 1 n = 3 2 ( 1 1 + 1 2 ) 2 1 2 = 5 4 = 1.25 \displaystyle f(n)=\sum_1^{\infty}\dfrac {n+3}{n*(n+1)*(n+2)}=\sum_1^{\infty}\dfrac {2(n+2) - (n+1)}{(n*(n+1)*(n+2)}\\ \displaystyle f(n)=\sum_1^{\infty}\dfrac 2 {n*(n+1)} - \sum_1^{\infty}\dfrac 1{(n*(n+2)}.\\ \dfrac 2 {n*(n+1)} =\dfrac A n + \dfrac B {n+1} ~~~~and~~~ \dfrac 1{n*(n+2)}=\dfrac C n + \dfrac D {n+2} .\\ \text{Solving for A, B, C, D, and combining A and C}\\ \displaystyle f(n)=\dfrac 3 2 *\sum_1^{\infty} \dfrac 1 n +\dfrac1 2 *\sum_1^{\infty} \dfrac 1{ n+2} - 2 *\sum_1^{\infty} \dfrac 1{n +1}\\ \small \text{We could obtain partial fractions directly by solving 3 equations in three unknowns.}\\ \small \text{ But here we have split into two sets of 2 equations in 2 unknowns, I felt that is easy.} \\ Also ~ refresh:- \displaystyle \sum_{n=a}^b f(n)=\sum_{n=a - c}^{b - c} f(n + c) , ~~our ~b=\infty.\\ \therefore \displaystyle f(n)=\dfrac 3 2 *\sum_{n=1}^{\infty} \dfrac 1 n + \dfrac1 2 *\sum_{n=3}^{\infty} \dfrac 1 n - 2 *\sum_{n=2}^{\infty} \dfrac 1n \\ \displaystyle \therefore \color{#3D99F6}{\dfrac 3 2 *\sum_{n=1}^2 \dfrac 1 n} + \dfrac 3 2 *\sum_{n=3}^{\infty} \dfrac 1 n+ \dfrac1 2 *\sum_{n=3}^{\infty} \dfrac 1 n - \color{#3D99F6}{ 2 *\sum_{n=2}^2 \dfrac 1n} -2 *\sum_{n=3}^{\infty} \dfrac 1n \\ \text{In telescoping series f(n) the only terms those does not cancel out are }\\ \displaystyle~ \color{#3D99F6}{\dfrac 3 2 *\sum_{n=1}^2 \dfrac 1 n} - \color{#3D99F6}{2 *\sum_{n=2}^2\dfrac 1 n} = \dfrac 3 2 *( \dfrac 1 1 + \dfrac 1 2)- 2*\dfrac 1 2= \dfrac 5 4=\Large ~~\color{#D61F06}{1.25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...