To integrate or not to integrate, that is the question

Calculus Level 5

If

0 x 3 e x 1 d x \int_0^{\infty} \frac{x^3}{e^x-1} \ dx

can be written in the form π a b \displaystyle \frac{\pi^a}{b} for integers a , b a,b , find a + b a+b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Sep 8, 2015

0 x 3 e x 1 e x \large{\displaystyle \int_{0}^{\infty} \frac{x^{3}e^{-x}}{1-e^{-x}}}

0 x 3 r = 1 e r x \large{\displaystyle \int_{0}^{\infty} x^3 \displaystyle \sum_{r=1}^{\infty} e^{-rx}}

r = 1 0 x 3 e r x d x \large{\displaystyle \sum_{r=1}^{\infty} \displaystyle \int_{0}^{\infty} x^3 e^{-rx} dx}

put r x = t rx=t

= Γ ( 4 ) r = 1 1 r 4 \large{= \Gamma (4)\displaystyle \sum_{r=1}^{\infty} \frac{1}{r^4} } ( 0 t n e t d t = Γ ( n + 1 ) ) \left (\because \displaystyle \int_{0}^{\infty} t^{n} e^{-t} dt=\Gamma (n+1) \right )

= Γ ( 4 ) ζ ( 4 ) \large{= \Gamma (4) \zeta (4)}

= π 4 15 \large{=\boxed{\frac{\pi^{4}}{15}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...