To Integrate or not to Integrate

Calculus Level 4

1 2 x x x 5 4 3 d x = A B e C D F e G \int_1^2 \sqrt{ x\sqrt[3]{x\sqrt[4]{x\sqrt[5]{\cdots}}}}\text{d}x=\frac{A^{Be-C}-D}{Fe-G}

The equation above holds true for positive integers A , B , C , D , F , G A,B,C,D,F,G . Find A + B + C + D + F + G A+B+C+D+F+G .

Notation: e 2.718 e\approx 2.718 denotes the Euler's number .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 10, 2019

I = 1 2 x x x 5 4 3 d x = 1 2 ( x ( x ( x ( ) 1 5 ) 1 4 ) 1 3 ) 1 2 d x = 1 2 x 1 2 + 1 3 ! + 1 4 ! + d x = 1 2 x e 2 d x = x e 1 e 1 1 2 = 2 e 1 1 e 1 \begin{aligned} I & = \int_1^2 \sqrt{x\sqrt[3]{x\sqrt[4]{x\sqrt[5]{\cdots}}}} dx \\ & = \int_1^2 \left(x\left(x\left(x\left(\cdots \right)^\frac 15\right)^\frac 14\right)^\frac 13\right)^\frac 12 dx \\ & = \int_1^2 x^{\frac 12 + \frac 1{3!} + \frac 1{4!}+\cdots}\ dx \\ & = \int_1^2 x^{e-2}\ dx = \frac {x^{e-1}}{e-1}\ \bigg|_1^2 = \frac {2^{e-1}-1}{e-1} \end{aligned}

Therefore, A + B + C + D + F + G = 2 + 1 + 1 + 1 + 1 + 1 = 7 A+B+C+D+F+G = 2+1+1+1+1+1 = \boxed 7 .

The integrand is x e 2 x^{e-2} . The value of the integral is 2 e 1 1 e 1 \dfrac{2^{e-1}-1}{e-1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...