To Know Whether Everyone Knows Identities? - 2

Algebra Level 2

True or False? :

If a + b + c = 0 \color{#D61F06}{a + b + c = 0} , then a 3 + b 3 + c 3 = 3 a b c \color{#3D99F6}{a^3 + b^3 + c^3 = 3abc } .

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishav Kumar
Jul 18, 2015

a + b + c = 0 a + b = c ( a + b ) 3 = ( c ) 3 a 3 + b 3 + 3 a b ( a + b ) = c 3 a 3 + b 3 3 a b c = c 3 since a + b = c a 3 + b 3 + c 3 = 3 a b c a+b+c=0\\a+b=-c\\(a+b)^3=(-c)^3\\a^3+b^3+3ab(a+b)=-c^3\\a^3+b^3-3abc=-c^3\\ \text{since}\,a+b=-c\\a^3+b^3+c^3=3abc

Good job !!

Soumya Satpati - 5 years, 10 months ago

Log in to reply

he did not take into account the union intersection finite theory proof.

Ching Chong - 5 years, 10 months ago
Siddharth Singh
Jul 16, 2015

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

The entire right hand side is 0 because a + b + c = 0 a+b+c=0 . So it must be that the left hand side is 0.

Hence, a 3 + b 3 + c 3 3 a b c = 0 a 3 + b 3 + c 3 = 3 a b c a^{3}+b^{3}+c^{3}-3abc=0 \longrightarrow a^{3}+b^{3}+c^{3}=3abc .

Moderator note:

That's a useful algebraic identity to know!

Let's start with grouping the terms.

b 3 + c 3 = ( b + c ) ( ( b + c ) 2 3 b c ) b^{3}+c^{3}=(b+c)((b+c)^{2}-3bc)

then we have b + c = a b+c=-a substitute this result to the above expression.

b 3 + c 3 = ( a ) ( a 2 3 b c ) = a 3 + 3 a b c b^{3}+c^{3}=(-a)(a^{2}-3bc)=-a^{3}+3abc

So

a 3 + b 3 + c 2 = 3 a b c a^{3}+b^{3}+c^{2}=3abc

Moderator note:

Is the converse true as well? That is, "if a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3=3abc , then a + b + c = 0 a+b+c=0 "?

The converse is false

a=b=c=1

math man - 5 years, 11 months ago
Oleg Turcan
Mar 2, 2018

L e t s d e f i n e S k = a k + b k + c k B y r e c u r r e n c e w e g o t : S k + 3 σ 1 S k + 2 + σ 2 S k + 1 σ 3 S k = 0 , k 0 S u c h t h a t { σ 1 = a + b + c σ 2 = a b + a c + b c σ 3 = a b c i f k = 0 t h e n w e h a v e : S 3 σ 1 S 2 + σ 2 S 1 σ 3 S 0 = 0 S 3 3 σ 3 = 0 S 3 = 3 σ 3 H e n c e a 3 + b 3 + c 3 = 3 a b c Let's\quad define\quad { S }_{ k }={ a }^{ k }+{ b }^{ k }+{ c }^{ k }\\ By\quad recurrence\quad we\quad got:\\ { S }_{ k+3 }-{ \sigma }_{ 1 }{ S }_{ k+2 }+{ \sigma }_{ 2 }{ S }_{ k+1 }-{ \sigma }_{ 3 }{ S }_{ k }=0\quad ,\quad k\ge 0\\ Such\quad that\quad \begin{cases} { \sigma }_{ 1 }=a+b+c \\ { \sigma }_{ 2 }=ab+ac+bc \\ { \sigma }_{ 3 }=abc \end{cases}\\ if\quad k=0\quad then\quad we\quad have:\\ \qquad \qquad { S }_{ 3 }-{ \sigma }_{ 1 }{ S }_{ 2 }+{ \sigma }_{ 2 }{ S }_{ 1 }-{ \sigma }_{ 3 }{ S }_{ 0 }=0\\ \qquad \qquad \Rightarrow { S }_{ 3 }-3{ \sigma }_{ 3 }=0\Rightarrow { S }_{ 3 }=3{ \sigma }_{ 3 }\\ Hence\quad { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }=3abc\quad \Box note that σ 1 = S 1 = 0 { \sigma }_{ 1 }={ S }_{ 1 }=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...