To multiply or not to multiply

Algebra Level pending

Find 1 4 × 9 \dfrac{1}{4×9} + 1 9 × 14 \dfrac{1}{9×14} + 1 14 × 19 \dfrac{1}{14×19} +...+ 1 1999 × 2004 \dfrac{1}{1999×2004}

27/501 24/501 26/501 25/501

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Yong Hao Tham
Apr 30, 2016

let 1 4 × 9 \frac{1}{4×9} = 1 n ( n + 5 ) \frac{1}{n(n+5)}

1 n ( n + 5 ) \frac{1}{n(n+5)} = A n \frac{A}{n} + B n + 5 \frac{B}{n+5}

1=A(n+5)+B(n)

Substituting n=0 and n=-5 gives us A= 1 5 \frac{1}{5} and B=- 1 5 \frac{1}{5}

Substituting A and B back will give us 1 5 n \frac{1}{5n} - 1 5 n + 25 \frac{1}{5n+25}

Now the expression becomes

1 4 × 9 \frac{1}{4×9} + 1 9 × 14 \frac{1}{9×14} + 1 70 \frac{1}{70} - 1 95 \frac{1}{95} + 1 95 \frac{1}{95} - 1 120 \frac{1}{120} + 1 120 \frac{1}{120} - 1 145 \frac{1}{145} +...+ 1 9970 \frac{1}{9970} - 1 9995 \frac{1}{9995} + 1 9995 \frac{1}{9995} - 1 10020 \frac{1}{10020}

where the center part telescopes and what's left would be

1 20 \frac{1}{20} - 1 10020 \frac{1}{10020} = 25 501 \boxed{\frac{25}{501}}

Hung Woei Neoh
May 9, 2016

Another solution:

1 4 × 9 + 1 9 × 14 = 14 4 × 9 × 14 + 4 4 × 9 × 14 = 18 4 × 9 × 14 = 2 4 × 14 \dfrac{1}{4 \times 9} + \dfrac{1}{9 \times 14}\\ = \dfrac{14}{4 \times 9 \times 14} + \dfrac{4}{4 \times 9 \times 14}\\ = \dfrac{18}{4 \times 9 \times 14}\\ = \dfrac{2}{4 \times 14}

Next, we add the third term:

2 4 × 14 + 1 14 × 19 = 38 4 × 14 × 19 + 4 4 × 14 × 19 = 42 4 × 14 × 19 = 3 4 × 19 \dfrac{2}{4 \times 14} + \dfrac{1}{14 \times 19}\\ = \dfrac{38}{4 \times 14 \times 19}+ \dfrac{4}{4 \times 14 \times 19}\\ = \dfrac{42}{4 \times 14 \times 19}\\ = \dfrac{3}{4 \times 19}

Have you noticed a pattern? If yes, good for you. The sum of the expression

1 4 × 9 + 1 9 × 14 + 1 14 × 19 + + 1 ( 5 n 1 ) ( 5 n + 4 ) \dfrac{1}{4 \times 9} + \dfrac{1}{9 \times 14} + \dfrac{1}{14 \times 19} + \ldots + \dfrac{1}{(5n-1)(5n+4)}

where n n is the number of terms in the expression, is equivalent to

n 4 × ( 5 n + 4 ) \dfrac{n}{4 \times (5n+4)}

Now, for this particular sum, the total is given as

n 4 × 2004 \dfrac{n}{4 \times 2004}

We need to find the value of n n :

2004 = 5 n + 4 5 n = 2000 n = 400 2004 = 5n +4\\ 5n=2000\\ n=400

Substitute it in:

400 4 × 2004 = 100 2004 = 25 501 \dfrac{400}{4 \times 2004} = \dfrac{100}{2004} = \dfrac{25}{501}

Therefore,

1 4 × 9 + 1 9 × 14 + 1 14 × 19 + + 1 1999 × 2004 = 25 501 \dfrac{1}{4 \times 9} + \dfrac{1}{9 \times 14} + \dfrac{1}{14 \times 19} + \ldots + \dfrac{1}{1999 \times 2004}= \boxed{\dfrac{25}{501}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...