To satisfy an equation

An integer n n is such that:

n 3 + 2015 n = 201 7 2017 + 1 n^3+2015n=2017^{2017} + 1

How many solutions are there?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Oct 23, 2020

Consider the equation modulo 3 3 ; we get

n n 1 + 1 n-n \equiv 1+1

This clearly has no solutions.

Hongqi Wang
Oct 23, 2020

2017 2017 + 1 = ( 3 × 672 + 1 ) 2017 + 1 1 2017 + 1 2 m o d 3 3 2017 2017 + 1 {2017}^{2017} + 1 = (3 \times 672 +1)^{2017} + 1 \equiv 1^{2017} + 1 \equiv 2 \mod 3 \\ \therefore 3 \nmid {2017}^{2017} + 1

  • if n = 3 k n = 3k

n 3 + 2015 n = n ( n 2 + 2015 ) = 3 × k ( n 2 + 2015 ) 3 n 3 + 2015 n n^3 + 2015n = n(n^2 + 2015) = 3 \times k(n^2 + 2015) \\ \therefore 3 | n^3 + 2015n

  • if n = 3 k + 1 n = 3k + 1

n 3 + 2015 n = n ( ( 3 k + 1 ) 2 + ( 3 × 671 + 2 ) ) = n ( 9 k 2 + 6 k + 1 + 3 × 671 + 2 ) = 3 × n ( 3 k 2 + 2 k + 672 ) 3 n 3 + 2015 n n^3 + 2015n = n((3k+1)^2 + (3 \times 671 +2)) = n(9k^2 + 6k + 1 + 3 \times 671+ 2) = 3 \times n(3k^2 + 2k + 672) \\ \therefore 3 | n^3 + 2015n

  • if n = 3 k + 2 n = 3k + 2

n 3 + 2015 n = n ( ( 3 k + 2 ) 2 + ( 3 × 671 + 2 ) ) = n ( 9 k 2 + 12 k + 4 + 3 × 671 + 2 ) = 3 × n ( 3 k 2 + 4 k + 673 ) 3 n 3 + 2015 n n^3 + 2015n = n((3k+2)^2 + (3 \times 671 +2)) = n(9k^2 + 12k + 4 + 3 \times 671+ 2) = 3 \times n(3k^2 + 4k + 673) \\ \therefore 3 | n^3 + 2015n

So 3 n 3 + 2015 n 3 | n^3 + 2015n , then no solution.

n 3 + 2015 n = ( n 2 + 2015 ) n = ( n 2 1 + 2016 ) n = ( ( n 1 ) ( n + 1 ) + 3 × 672 ) n = ( n 1 ) n ( n + 1 ) + 3 × 672 × n n^3 + 2015n = (n^2 + 2015)n \\ = (n^2 - 1 + 2016)n \\ = ((n-1)(n+1) + 3 \times 672)n \\ = (n-1)n(n+1) + 3 \times 672 \times n

obviously 3 ( n 1 ) n ( n + 1 ) 3 n 3 + 2015 n 3 | (n-1)n(n+1) \\ \therefore 3|n^3 + 2015n

Hongqi Wang - 7 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...