To the 48th power!

Algebra Level pending

Given that x = 4 ( 5 + 1 ) ( 5 4 + 1 ) ( 5 8 + 1 ) ( 5 16 + 1 ) x= \frac { 4 }{ (\sqrt { 5 } +1)(\sqrt [ 4 ]{ 5 } +1)(\sqrt [ 8 ]{ 5 } +1)(\sqrt [ 16 ]{ 5 } +1) }

Find ( x + 1 ) 48 (x+1)^{48}


The answer is 125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex Delhumeau
May 12, 2015

4 ( 5 + 1 ) ( 5 4 + 1 ) ( 5 8 + 1 ) ( 5 16 + 1 ) = \large{\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}}=

4 ( 5 1 ) ( 5 4 1 ) ( 5 8 1 ) ( 5 16 1 ) ( 5 + 1 ) ( 5 1 ) ( 5 4 + 1 ) ( 5 4 1 ) ( 5 8 + 1 ) ( 5 8 1 ) ( 5 16 + 1 ) ( 5 16 1 ) = \large{4\frac{(\sqrt{5}-1)(\sqrt[4]{5}-1)(\sqrt[8]{5}-1)(\sqrt[16]{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)(\sqrt[4]{5}+1)(\sqrt[4]{5}-1)(\sqrt[8]{5}+1)(\sqrt[8]{5}-1)(\sqrt[16]{5}+1)(\sqrt[16]{5}-1)}}=

4 ( 5 1 ) ( 5 4 1 ) ( 5 8 1 ) ( 5 16 1 ) ( 5 1 ) ( 5 1 ) ( 5 4 1 ) ( 5 8 1 ) = \large{4\frac{(\sqrt{5}-1)(\sqrt[4]{5}-1)(\sqrt[8]{5}-1)(\sqrt[16]{5}-1)}{(5-1)(\sqrt{5}-1)(\sqrt[4]{5}-1)(\sqrt[8]{5}-1)}}=

5 16 1 x = 5 16 \sqrt[16]{5}-1 \rightarrow x = \sqrt[16]{5} .

5 16 48 = 5 3 = 125 {\sqrt[16]{5}}^{48}=5^3=\boxed{\small{125}}

L e t t = 5 16 X = 4 ( t 8 + 1 ) ( t 4 + 1 ) ( t 2 + 1 ) ( t + 1 ) Multiplying numerator and denominator by ( t 1 ) Let~ t=\sqrt[16]5~~~~~\therefore ~X=\large \dfrac{4}{(t^8+1)(t^4+1)(t^2+1)(t+1)} \\\text{Multiplying numerator and denominator by } (t-1)\\\implies

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...