To the basics of summation

Algebra Level 4

Find 1 × 100 + 2 × 99 + 3 × 98 + 4 × 97 + + 99 × 2 + 100 × 1 1\times 100 +2\times 99 +3\times 98 + 4\times 97+ \dots + 99\times 2 + 100\times 1


The answer is 171700.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Archit Boobna
Apr 22, 2015

This can be expressed as n = 1 100 n ( 101 n ) \sum _{ n=1 }^{ 100 }{ n\left( 101-n \right) }

This can be simplified to n = 1 100 101 n n 2 \sum _{ n=1 }^{ 100 }{ 101n-{ n }^{ 2 } }

Splitting the summation, n = 1 100 101 n n = 1 100 n 2 \sum _{ n=1 }^{ 100 }{ 101n } -\sum _{ n=1 }^{ 100 }{ { n }^{ 2 } }

Taking out 101 from the first summation, 101 n = 1 100 n n = 1 100 n 2 101\sum _{ n=1 }^{ 100 }{ n } -\sum _{ n=1 }^{ 100 }{ { n }^{ 2 } }

Solving the summations, 101 100 ( 100 + 1 ) 2 100 ( 100 + 1 ) ( 2 × 100 + 1 ) 6 101\frac { 100\left( 100+1 \right) }{ 2 } -\frac { 100\left( 100+1 \right) \left( 2\times 100+1 \right) }{ 6 }

which can be solved to get 171700 \boxed{171700}

One of my careless problems. hahah

Jun Arro Estrella - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...