To the power of 2000

What is the remainder when 199 1 2000 1991^{2000} is divided by 1 0 6 10^6 ?


The answer is 880001.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Harsh Khatri
May 3, 2016

( 1991 ) 2000 (1991)^{2000}

= ( 2000 9 ) 2000 =(2000-9)^{2000}

= 200 0 2000 + + ( 2000 1 ) 2000 ( 9 ) 1999 + ( 9 ) 2000 =2000^{2000} + \ldots +{2000 \choose 1}\cdot 2000\cdot (-9)^{1999} + (-9)^{2000}

Since all the terms in this expansion except the last term are greater than 1 0 6 10^6 , they will not contribute to the remainder. Hence:

199 1 2000 9 2000 ( m o d 1 0 6 ) 1991^{2000} \equiv 9^{2000} \pmod{10^6}

Writing the binomial expansion again, we get:

9 2000 = ( 10 1 ) 2000 9^{2000} = (10-1)^{2000}

= 1 0 2000 + + ( 2000 2 ) 1 0 2 ( 1 ) 1998 + ( 2000 1 ) 10 ( 1 ) 1999 + ( 1 ) 2000 = 10^{2000} + \ldots + {2000 \choose 2}\cdot 10^{2} \cdot (-1)^{1998} + {2000 \choose 1}\cdot 10 \cdot (-1)^{1999} + (-1)^{2000}

All the terms in the above expansion except the last three are greater than 1 0 6 10^6 . Hence:

199 1 2000 199 , 900 , 000 20 , 000 + 1 880 , 001 ( m o d 1 0 6 ) 1991^{2000} \equiv 199,900,000 - 20,000 + 1 \equiv \boxed{880,001} \pmod{10^6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...