Tomi's Challenges - #1

Geometry Level 4

Find the last digit of the length of the vector y y given by: \newline \newline

y = [ 2 2 3 2 3 2 ] 2021 [ 2 5 1 5 ] y=\begin{bmatrix} 2 & -2\sqrt{3}\\ 2\sqrt{3} & 2 \end{bmatrix}^{2021}\begin{bmatrix} \frac{2}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} \end{bmatrix}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tomislav Franov
Apr 16, 2021

Let A A be [ 2 2 3 2 3 2 ] 2021 \begin{bmatrix} 2 & -2\sqrt{3}\\ 2\sqrt{3} & 2 \end{bmatrix}^{2021} . \newline The most natural way to solve this problem is to think about what A A does to the vector's length. \newline Notice that A A looks suspiciously like the rotation matrix \newline

[ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] \begin{bmatrix} \cos(\theta) & -\sin(\theta)\\ \sin(\theta) & \cos(\theta) \end{bmatrix} \newline

Let's rewrite A A . \newline [ 2 2 3 2 3 2 ] 2021 = 4 2021 [ 1 2 3 2 3 2 1 2 ] 2021 \begin{bmatrix} 2 & -2\sqrt{3}\\ 2\sqrt{3} & 2 \end{bmatrix}^{2021}=4^{2021}\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}^{2021} \newline Notice that \newline [ 1 2 3 2 3 2 1 2 ] 2021 = [ cos ( 60 ° ) sin ( 60 ° ) sin ( 60 ° ) cos ( 60 ° ) ] 2021 \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}^{2021}=\begin{bmatrix} \cos(60°) & -\sin(60°)\\ \sin(60°) & \cos(60°) \end{bmatrix}^{2021} \newline

So we know that this matrix rotates a vector by 60 ° 60° 2021 times. Since rotating a vector has no effect on its length, the length of the vector which is being multiplied by the matrix is 1, the length of y y is \newline

4 2021 [ 1 2 3 2 3 2 1 2 ] 2021 [ 2 5 1 5 ] = 4 2021 [ 2 5 1 5 ] = 4 2021 × 1 = 4 2021 \left |4^{2021}\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}^{2021}\begin{bmatrix} \frac{2}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} \end{bmatrix} \right | = \left | 4^{2021}\begin{bmatrix} \frac{2}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} \end{bmatrix} \right | =4^{2021}\times{1}=4^{2021} . \newline Powers of 4 with positive exponents always end with 4 or 6. For odd exponents, they end with 4 4 , and for even exponents they end with 6 6 . So the length of the vector ends with 4 4 .

I guessed.

Saya Suka - 1 month, 3 weeks ago

Nice explanation! It might be easier to define A A without the exponent, and interpret the exponent as "apply A A to the vector 2021 2021 times" - at least that's how I think about matrix exponentiation geometrically.

Carsten Meyer - 1 month, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...