Let L be the following integer:
L = ( 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 0 4 2 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 + 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 0 4 4 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 + 2 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 2 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 1 0 7 + 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 0 4 2 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 + 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 0 4 4 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 + 2 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 2 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 1 0 7 ) 2 .
Find L L .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
That's how I did it!
L = ( 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 0 4 2 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 + 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 0 4 4 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 + 2 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 2 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 1 0 6 + 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 0 4 2 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 + 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 0 4 4 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 + 2 ⋅ 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 2 2 − 4 0 4 2 4 0 4 2 4 0 4 2 4 1 0 6 )
The red and blue expressions represent the same multivariable polynomial, but under different values. Let's call the polynomial f ( x , y ) . The red expression represents f ( 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 , 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 ) , and the blue expression represents f ( 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 9 , 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 4 ) . For the sake of simplicity, let's view only the polynomial.
f ( x , y ) = x 2 − 4 . . . 4 2 ⋅ x + y 2 − 4 . . . 4 4 ⋅ y + 2 ⋅ 2 . . . 2 2 2 − 4 . . . 4 1 0 7
f ( x , y ) = ( x − 2 . . . 2 1 ) 2 + ( y − 2 . . . 2 2 ) 2 − 2 . . . 2 1 2 − 2 . . . 2 2 2 + 2 ⋅ 2 . . . 2 2 2 − 4 . . . 4 1 0 7
f ( x , y ) = ( x − 2 . . . 2 1 ) 2 + ( y − 2 . . . 2 2 ) 2 + 2 . . . 2 2 2 − 2 . . . 2 1 2 − 4 . . . 4 1 0 7
f ( x , y ) = ( x − 2 . . . 2 1 ) 2 + ( y − 2 . . . 2 2 ) 2 + 4 . . . 4 0 4 3 − 4 . . . 4 1 0 7
f ( x , y ) = ( x − 2 . . . 2 1 ) 2 + ( y − 2 . . . 2 2 ) 2 − 6 4 .
Plugging in x and y , we get the following:
f ( 2 . . . 2 4 , 2 . . . 2 9 ) = ( 2 . . . 2 4 − 2 . . . 2 1 ) 2 + ( 2 . . . 2 9 − 2 . . . 2 2 ) 2 − 6 4 = 9 + 4 9 − 6 4 = − 6
f ( 2 . . . 2 9 , 2 . . . 2 4 ) = ( 2 . . . 2 9 − 2 . . . 2 1 ) 2 + ( 2 . . . 2 4 − 2 . . . 2 2 ) 2 − 6 4 = 6 4 + 4 − 6 4 = 4
We see that L = ( f ( 2 . . . 2 9 , 2 . . . 2 4 ) + f ( 2 . . . 2 4 , 2 . . . 2 9 ) ) 2 = ( − 2 ) 2 = 4 , L is 4, and 4 4 = 1 6 2 = 2 5 6 .
Problem Loading...
Note Loading...
Set Loading...
Simplify L with the help of the second binomial formula and N : = 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 1 : − L = = = ( N + 3 ) 2 − 2 N ( N + 3 ) + ( N + 8 ) 2 − 2 ( N + 1 ) ( N + 8 ) + 2 ( N + 1 ) 2 − ( 2 N + 6 5 ) + ( N + 8 ) 2 − 2 N ( N + 8 ) + ( N + 3 ) 2 − 2 ( N + 1 ) ( N + 3 ) + 2 ( N + 1 ) 2 − ( 2 N + 6 5 ) ( N + 3 − N ) 2 + ( N + 8 − N − 1 ) 2 + ( N + 8 − N ) 2 + ( N + 3 − N − 1 ) 2 ± 4 N + 2 − 1 3 0 3 2 + 7 2 + 8 2 + 2 2 + 2 − 1 3 0 = − 2 ⇒ L = 4 , L L = 2 5 6