Tomi's Challenges - #13

Algebra Level 4

Let L L be the following integer:

L = ( 202120212021202 4 2 4042404240424042 2021202120212024 + 202120212021202 9 2 4042404240424044 2021202120212029 + 2 202120212021202 2 2 4042404240424107 + 202120212021202 9 2 4042404240424042 2021202120212029 + 202120212021202 4 2 4042404240424044 2021202120212024 + 2 202120212021202 2 2 4042404240424107 ) 2 \small L=(2021202120212024^2-4042404240424042\cdot 2021202120212024+2021202120212029^2-4042404240424044\cdot 2021202120212029+2\cdot 2021202120212022^2-4042404240424107+2021202120212029^2-4042404240424042\cdot 2021202120212029+2021202120212024^2-4042404240424044\cdot 2021202120212024+2\cdot 2021202120212022^2-4042404240424107)^2 .

Find L L L^L .


The answer is 256.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Carsten Meyer
May 7, 2021

Simplify L L with the help of the second binomial formula and N : = 2021 2021 2021 2021 N:=2021\:2021\:2021\:2021 : L = ( N + 3 ) 2 2 N ( N + 3 ) + ( N + 8 ) 2 2 ( N + 1 ) ( N + 8 ) + 2 ( N + 1 ) 2 ( 2 N + 65 ) + ( N + 8 ) 2 2 N ( N + 8 ) + ( N + 3 ) 2 2 ( N + 1 ) ( N + 3 ) + 2 ( N + 1 ) 2 ( 2 N + 65 ) = ( N + 3 N ) 2 + ( N + 8 N 1 ) 2 + ( N + 8 N ) 2 + ( N + 3 N 1 ) 2 ± 4 N + 2 130 = 3 2 + 7 2 + 8 2 + 2 2 + 2 130 = 2 L = 4 , L L = 256 \begin{aligned} -\sqrt{L}=&(N+3)^2 - 2N(N+3) + (N+8)^2 - 2(N+1)(N+8) + 2(N+1)^2 - (2N+65)\\[.5em] & +(N+8)^2- 2N(N+8) + (N+3)^2-2(N+1)(N+3) + 2(N+1)^2- (2N+65)\\[.5em] =&(N+3-N)^2 + (N+8-N-1)^2+ (N+8-N)^2+ (N+3 - N - 1)^2\pm4N+2-130\\[.5em] =&3^2+7^2+8^2+2^2+2-130=-2\qquad\Rightarrow \qquad L=4,\qquad L^L=\boxed{256} \end{aligned}

That's how I did it!

Veselin Dimov - 1 month ago
Tomislav Franov
May 6, 2021

L = ( 202120212021202 4 2 4042404240424042 2021202120212024 + 202120212021202 9 2 4042404240424044 2021202120212029 + 2 202120212021202 2 2 4042404240424106 + 202120212021202 9 2 4042404240424042 2021202120212029 + 202120212021202 4 2 4042404240424044 2021202120212024 + 2 202120212021202 2 2 4042404240424106 ) L=(\textcolor{#D61F06}{2021202120212024^2-4042404240424042\cdot 2021202120212024+2021202120212029^2-4042404240424044\cdot 2021202120212029+2\cdot 2021202120212022^2-4042404240424106}+\textcolor{#3D99F6}{2021202120212029^2-4042404240424042\cdot 2021202120212029+2021202120212024^2-4042404240424044\cdot 2021202120212024+2\cdot 2021202120212022^2-4042404240424106})

The red and blue expressions represent the same multivariable polynomial, but under different values. Let's call the polynomial f ( x , y ) f(x, y) . The red expression represents f ( 2021202120212024 , 2021202120212029 ) f(2021202120212024, 2021202120212029) , and the blue expression represents f ( 2021202120212029 , 2021202120212024 ) f(2021202120212029, 2021202120212024) . For the sake of simplicity, let's view only the polynomial.

f ( x , y ) = x 2 4...42 x + y 2 4...44 y + 2 2...2 2 2 4...4107 f(x, y)=x^2-4...42\cdot x+y^2-4...44\cdot y+2\cdot 2...22^2-4...4107

f ( x , y ) = ( x 2...21 ) 2 + ( y 2...22 ) 2 2...2 1 2 2...2 2 2 + 2 2...2 2 2 4...4107 f(x, y)=(x-2...21)^2+(y-2...22)^2-2...21^2-2...22^2+2\cdot 2...22^2-4...4107

f ( x , y ) = ( x 2...21 ) 2 + ( y 2...22 ) 2 + 2...2 2 2 2...2 1 2 4...4107 f(x, y)=(x-2...21)^2+(y-2...22)^2+2...22^2-2...21^2-4...4107

f ( x , y ) = ( x 2...21 ) 2 + ( y 2...22 ) 2 + 4...4043 4...4107 f(x, y)=(x-2...21)^2+(y-2...22)^2+4...4043-4...4107

f ( x , y ) = ( x 2...21 ) 2 + ( y 2...22 ) 2 64 f(x, y)=(x-2...21)^2+(y-2...22)^2-64 .

Plugging in x x and y y , we get the following:

f ( 2...24 , 2...29 ) = ( 2...24 2...21 ) 2 + ( 2...29 2...22 ) 2 64 = 9 + 49 64 = 6 f(2...24, 2...29)=(2...24-2...21)^2+(2...29-2...22)^2-64=9+49-64=-6

f ( 2...29 , 2...24 ) = ( 2...29 2...21 ) 2 + ( 2...24 2...22 ) 2 64 = 64 + 4 64 = 4 f(2...29, 2...24)=(2...29-2...21)^2+(2...24-2...22)^2-64=64+4-64=4

We see that L = ( f ( 2...29 , 2...24 ) + f ( 2...24 , 2...29 ) ) 2 = ( 2 ) 2 = 4 L=(f(2...29, 2...24)+f(2...24, 2...29))^2=(-2)^2=4 , L L is 4, and 4 4 = 1 6 2 = 256 4^4=16^2=\boxed{256} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...