Tomi's Challenges - #20

15793475837326 101 + 25734263464529 102 + 34957685947379 103 + 67483926829160 104 + 34957685947382 105 + 25734263464528 106 + 15793475837328 107 15793475837326 + 25734263464529 + 34957685947379 + 67483926829160 + 34957685947382 + 25734263464528 + 15793475837328 \small \frac{15793475837326\cdot 101 + 25734263464529\cdot 102 + 34957685947379\cdot 103+ 67483926829160\cdot 104 + 34957685947382\cdot 105 + 25734263464528\cdot 106 + 15793475837328\cdot 107}{15793475837326+25734263464529+34957685947379+67483926829160+34957685947382+25734263464528+15793475837328}

Without using a calculator, find the value of the quotient above, rounded to the nearest integer.


The answer is 104.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tomislav Franov
May 28, 2021

This problem is a good example of how statistics can be used to solve exercises like this. Notice that this expression looks suspiciously like the formula for the weighted arithmetic mean, which is used to compute the arithmetic mean of grouped sequences. The formula I am talking about is the following:

x ˉ = f 1 x 1 + f 2 x 2 + . . . + f k x k N \bar{x}=\frac{f_1x_1+f_2x_2+...+f_kx_k}{N}

Where f i f_i are the frequencies of the data set, and N N is the size of the data set. If we treat the above expression as the arithmetic mean of a data set, we get the following data set.

x i x_i f i f_i
101 15793475837326
102 25734263464529
103 34957685947379
104 67483926829160
105 34957685947382
106 25734263464528
107 15793475837328

We know that if a data set is symmetric, its mode (if it exists and if it's unique), its median and its arithmetic mean are equal. This data set is very close to being symmetric, so the mode and median will also be very close to the arithmetic mean. The median is quite hard to compute without a calculator, but we can easily see that the mode is 104 104 , it having the highest frequency. So, the expression above - the arithmetic mean, is very close to this value, so we can conclude that it being rounded to the nearest digit will yield 104 104 .

Agent T
May 29, 2021

Let the nos. be a,b,c,d,e,f,g \textcolor{#69047E}{\text{Let the nos. be a,b,c,d,e,f,g}} ( pls don’t judge me for being lazy \tiny{\text{pls don't judge me for being lazy}} )

a . 101 + b . 102 + c . 103 + d . 104 + e . 105 + f . 106 + g . 107 a + b + c + d + e + f + g \dfrac{a.101+b.102+c.103+d.104+e.105+f.106+g.107}{a+b+c+d+e+f+g}

101 can be written as 104-3 Similarly,

102 104-2
103 104-1
105 104+1
106 104+2
107 104+3

Re-writing the expression :

104 ( a + b + c + d + e + f + g ) 3 a 2 b c + e + 2 f + 3 g a + b + c + d + e + f + g \boxed{\dfrac{104(a+b+c+d+e+f+g)-3a-2b-c+e+2f+3g}{a+b+c+d+e+f+g}}


Notice that

  • a+2=g
  • b-1=f
  • c+3=e

Re-writing it again :

104 ( 2 a + 2 b + 2 c + d + 4 ) 7 2 a + 2 b + 2 c + d + 4 \boxed{\dfrac{104(2a+2b+2c+d+4)-7}{2a+2b+2c+d+4}}


Let 2a+2b+2c+d+4 be T \textcolor{#3D99F6}{\text{Let 2a+2b+2c+d+4 be T }}

= > 104 ( T ) T 7 T =>\dfrac{104(T)}{T} - \dfrac{7}{T}

Wait ,don't you think 7 T \dfrac{7}{T} is v.v. smol? Well yes it is!

So the nearest integer is 104 \boxed{\large{104}}

Boom!

You could approximate it like (1 *101 +2 *102 +3 *103 +6 *104 +3 *105+ 2 *106 +1 *107)/(1+2+3+6+3+2+1).Multiplying the numerator by 2 and divide the denominator by 2 you get (1+2+3+6+3+2+1) *208/((1+2+3+6+3+2+1) *2)=104

. .. - 2 weeks ago

Log in to reply

Yeah cool ,you substituted simpler values for abcdefg .Good approach!

Agent T - 2 weeks ago
Chew-Seong Cheong
May 30, 2021

Let the quotient to be:

Q = 101 a 1 + 102 a 2 + 103 a 3 + 104 a 4 + 105 a 5 + 106 a 6 + 107 a 7 a 1 + a 2 + a 3 + a 4 + a 5 + a 6 + a 7 Q = \frac {101a_1 + 102a_2 + 103a_3+104a_4+105a_5+106a_6+107a_7}{a_1 + a_2 + a_3+a_4+a_5+a_6+a_7}

where a 1 = 15793475837326 a_1 = 15793475837326 , a 2 = 25734263464529 a_2 = 25734263464529 , a 3 = 34957685947379 a_3 = 34957685947379 , a 4 = 67483926829160 a_4 = 67483926829160 , a 5 = 34957685947382 a_5 = 34957685947382 , a 6 = 25734263464528 a_6 = 25734263464528 , and a 7 = 15793475837328 a_7 = 15793475837328 .

We note that a 1 a 7 a_1 \approx a_7 , a 2 a 6 a_2 \approx a_6 , and a 3 a 5 a_3 \approx a_5 , with an error of < 2 × 1 0 13 < 2 \times 10^{-13} . Therefore,

Q ( 101 + 107 ) a 1 + ( 102 + 106 ) a 2 + ( 103 + 105 ) a 3 + 104 a 4 2 a 1 + 2 a 2 + 2 a 3 + a 4 = 104 ( 2 a 1 + 2 a 2 + 2 a 3 + a 4 ) 2 a 1 + 2 a 2 + 2 a 3 + a 4 = 104 \begin{aligned} Q & \approx \frac {(101+107)a_1+(102+106)a_2+(103+105)a_3 + 104a_4}{2a_1 + 2a_2 + 2a_3 + a_4} \\ & = \frac {104(\cancel{2a_1 + 2a_2 + 2a_3 + a_4})}{\cancel{2a_1 + 2a_2 + 2a_3 + a_4}} \\ & = \boxed{104} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...