Tomi's Challenges - #23

Without using a calculator, find the exact value of

ϕ ( 17 2 0 8 17 8 1 6 7 4 17 28 1 6 6 4 2 17 56 1 6 5 4 3 17 70 1 6 4 4 4 17 56 1 6 3 4 5 17 28 1 6 2 4 6 17 8 16 4 7 ) 4 15 \small \frac{\phi(17\cdot 20^8-17\cdot 8\cdot 16^7\cdot 4-17\cdot 28\cdot 16^6\cdot 4^2-17\cdot 56\cdot 16^5\cdot 4^3-17\cdot 70\cdot 16^4\cdot 4^4-17\cdot 56\cdot 16^3\cdot 4^5-17\cdot 28\cdot 16^2\cdot 4^6-17\cdot 8\cdot 16\cdot 4^7)}{4^{15}} .

Note: ϕ \phi is Euler's totient function .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Note that the expression can be written as:

Q = ϕ ( 17 ( a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 ) ) 4 15 Q = \frac {\phi \left(17(a_1 - a_2 - a_3 - a_4 - a_5 - a_6 - a_7 - a_8) \right)}{4^{15}}

where

a 1 = 2 0 8 = 4 8 5 8 = 4 8 ( 4 + 1 ) 8 = 4 8 ( 4 8 + 8 4 7 + 28 4 6 + 56 4 5 + 70 4 4 + 56 4 3 + 28 4 2 + 8 4 + 1 ) = 1 6 8 + 8 1 6 7 4 + 28 1 6 6 4 2 + 56 1 6 5 4 3 + 70 1 6 4 4 4 + 56 1 6 3 4 5 + 28 1 6 2 4 6 + 8 16 4 7 + 4 8 = 1 6 8 + a 2 + a 3 + a 4 + a 5 + a 6 + a 7 + a 8 + 4 8 \begin{aligned} a_1 & = 20^8 = 4^8 5^8 = 4^8 (4+1)^8 \\ & = 4^8 (4^8 + 8 \cdot 4^7 + 28 \cdot 4^6 + 56 \cdot 4^5 + 70 \cdot 4^4 + 56 \cdot 4^3 + 28 \cdot 4^2 + 8 \cdot 4 + 1) \\ & = 16^8 + 8 \cdot 16^7 \cdot 4 + 28 \cdot 16^6 \cdot 4^2 + 56 \cdot 16^5 \cdot 4^3 + 70 \cdot 16^4 \cdot 4^4 + 56 \cdot 16^3 \cdot 4^5 + 28 \cdot 16^2 \cdot 4^6 + 8 \cdot 16 \cdot 4^7 + 4^8 \\ & = 16^8 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + 4^8 \end{aligned}

Then

Q = ϕ ( 17 ( 1 6 8 + 4 8 ) ) 4 15 = ϕ ( 17 4 8 ( 4 8 + 1 ) ) 4 15 = ϕ ( 17 4 8 65537 ) 4 15 Note that 65537 is a prime. = 17 4 8 65537 4 15 16 17 1 2 4 8 65537 = 4 18 2 4 15 = 32 \begin{aligned} Q & = \frac {\phi \left(17(16^8+4^8)\right)}{4^{15}} \\ & = \frac {\phi \left(17\cdot 4^8(4^8+1)\right)}{4^{15}} \\ & = \frac {\phi \left(17\cdot 4^8 \cdot \blue{65537} \right)}{4^{15}} & \small \blue{\text{Note that }65537 \text{ is a prime.}} \\ & = \frac {17\cdot 4^8 \cdot 65537}{4^{15}} \cdot \frac {16}{17} \cdot \frac 12 \cdot \frac {4^8}{65537} \\ & = \frac {4^{18}}{2\cdot 4^{15}} = \boxed{32} \end{aligned}

Tomislav Franov
Jun 4, 2021

The gist of this problem is the following two things:

  • ϕ ( p ) = p 1 \phi(p)=p-1 , for any prime number p p .
  • ϕ ( p ) = p 2 \phi(p)=\frac{p}{2} whenever a natural number p p is a power of 2.

Knowing these two things, let's solve the problem. The first step is to simplify the numerator:

ϕ ( 17 2 0 8 17 8 1 6 7 4 17 28 1 6 6 4 2 17 56 1 6 5 4 3 17 70 1 6 4 4 4 17 56 1 6 3 4 5 17 28 1 6 2 4 6 17 8 16 4 7 ) = \phi(17\cdot 20^8-17\cdot 8\cdot 16^7\cdot 4-17\cdot 28\cdot 16^6\cdot 4^2-17\cdot 56\cdot 16^5\cdot 4^3-17\cdot 70\cdot 16^4\cdot 4^4-17\cdot 56\cdot 16^3\cdot 4^5-17\cdot 28\cdot 16^2\cdot 4^6-17\cdot 8\cdot 16\cdot 4^7)= = ϕ ( 17 ( 2 0 8 8 1 6 7 4 28 1 6 6 4 2 56 1 6 5 4 3 70 1 6 4 4 4 56 1 6 3 4 5 28 1 6 2 4 6 8 16 4 7 ) ) = =\phi(17(20^8-8\cdot 16^7\cdot 4-28\cdot 16^6\cdot 4^2-56\cdot 16^5\cdot 4^3-70\cdot 16^4\cdot 4^4-56\cdot 16^3\cdot 4^5-28\cdot 16^2\cdot 4^6-8\cdot 16\cdot 4^7))= = ϕ ( 17 ( ( 16 + 4 ) 8 8 1 6 7 4 28 1 6 6 4 2 56 1 6 5 4 3 70 1 6 4 4 4 56 1 6 3 4 5 28 1 6 2 4 6 8 16 4 7 ) ) = =\phi(17((16+4)^8-8\cdot 16^7\cdot 4-28\cdot 16^6\cdot 4^2-56\cdot 16^5\cdot 4^3-70\cdot 16^4\cdot 4^4-56\cdot 16^3\cdot 4^5-28\cdot 16^2\cdot 4^6-8\cdot 16\cdot 4^7))= = ϕ ( 17 ( 1 6 8 + 4 8 ) ) =\phi(17(16^8+4^8)) Since 1 6 8 + 4 8 16^8+4^8 is even, it's relatively prime with 17 17 . Therefore: = ϕ ( 17 ) ϕ ( 1 6 8 + 4 8 ) = 16 ϕ ( 1 6 8 + 4 8 ) =\phi(17)\phi(16^8+4^8)=16\cdot \phi(16^8+4^8)

The next problem is to find ϕ ( 1 6 8 + 4 8 ) \phi(16^8+4^8) . Notice that ϕ ( 1 6 8 + 4 8 ) = ϕ ( 4 8 ( 4 8 + 1 ) ) \phi(16^8+4^8)=\phi(4^8\cdot (4^8+1)) . These two numbers are adjacent so they are relatively prime. We have:

ϕ ( 4 8 ( 4 8 + 1 ) ) = ϕ ( 4 8 ) ϕ ( 4 8 + 1 ) \phi(4^8\cdot (4^8+1))=\phi(4^8)\phi(4^8+1) . Since 4 8 = 2 16 4^8=2^{16} , it's a power of 2 so ϕ ( 2 16 ) = 2 16 2 = 2 15 \phi(2^{16})=\frac{2^{16}}{2}=2^{15} .

Now we need to find ϕ ( 4 8 + 1 ) \phi(4^8+1) . Notice that

4 8 + 1 = 2 16 + 1 = 2 2 4 + 1 4^8+1=2^{16}+1=2^{2^4}+1 . This is a Fermat number , and it is known that all Fermat numbers up to and including 2 2 4 + 1 2^{2^4}+1 are prime. Therefore ϕ ( 4 8 + 1 ) = 2 16 \phi(4^8+1)=2^{16} . All in all, we have the following:

16 2 31 4 15 = 16 2 31 2 30 = 2 16 = 32 \frac{16\cdot 2^{31}}{4^{15}}=\frac{16\cdot 2^{31}}{2^{30}}=2\cdot 16=32 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...