Let and
Submit your answer as
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, let's plug in R e ( z ) and I m ( z ) .
lim y → ∞ ( I m ( 2 z 2 + i z ) − 2 2 0 2 1 R e ( 2 0 2 1 ) + I m ( y ) + I m ( 2 0 2 1 × z ) ) y
Next, you need to know that R e ( z ) and I m ( z ) are both linear operators . This means they satisfy the following two properties:
R e ( a + b ) = R e ( a ) + R e ( b ) I m ( a + b ) = I m ( a ) + I m ( b )
R e ( α a ) = α R e ( a ) I m ( α a ) = α I m ( a )
It can be easily shown that they also satisfy the following properties:
R e ( α ) = α I m ( α ) = 0 R e ( i z ) = − I m ( z ) I m ( i z ) = R e ( z )
Using this, let's solve this exercise. We have:
lim y → ∞ ( I m ( 2 z 2 + i z ) − 2 2 0 2 1 R e ( 2 0 2 1 ) + I m ( y ) + I m ( 2 0 2 1 × z ) ) y =
lim y → ∞ ( 2 1 I m ( z 2 + i z ) − 2 2 0 2 1 2 0 2 1 + 0 + 2 0 2 1 I m ( z ) ) y =
lim y → ∞ ( 2 1 I m ( z 2 ) + 2 1 I m ( i z ) − 2 2 0 2 1 2 0 2 1 + 2 0 2 1 y ) y =
lim y → ∞ ( 2 1 4 0 4 2 y + 2 1 R e ( z ) − 2 2 0 2 1 2 0 2 1 + 2 0 2 1 y ) y =
lim y → ∞ ( 2 0 2 1 y + 2 2 0 2 1 − 2 2 0 2 1 2 0 2 1 + 2 0 2 1 y ) y =
lim y → ∞ ( 2 0 2 1 y 2 0 2 1 + 2 0 2 1 y ) y =
lim y → ∞ ( y 1 + y ) y =
lim y → ∞ ( 1 + y 1 ) y = e
So the answer is ⌊ 4 0 e ⌋ = 1 0 8 .