Tomi's Challenges - #7

Calculus Level 4

Let z = 2021 + y i , z=2021+yi, and

L = lim ( z ) ( ( ( z ) ) + ( ( z ) ) + ( z ( z ) ) ( z 2 + i z 2 ) ( z ) 2 ) ( z ) L = \lim_{\Im(z)\to\infty} \left (\frac{\Re(\Re(z))+\Im(\Im(z))+\Im(z\Re(z))}{\Im(\frac{z^2+iz}{2})-\frac{\Re(z)}{2}} \right)^{\Im(z)}

Submit your answer as 40 L . \lfloor{40L} \rfloor .

Notations:


The answer is 108.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tomislav Franov
Apr 20, 2021

First, let's plug in R e ( z ) Re(z) and I m ( z ) Im(z) .

lim y ( R e ( 2021 ) + I m ( y ) + I m ( 2021 × z ) I m ( z 2 + i z 2 ) 2021 2 ) y \Large \lim_{y\to\infty} \left (\frac{Re(2021)+Im(y)+Im(2021\times z)}{Im(\frac{z^2+iz}{2})-\frac{2021}{2}} \right)^{y}

Next, you need to know that R e ( z ) Re(z) and I m ( z ) Im(z) are both linear operators . This means they satisfy the following two properties:

  • Additivity

R e ( a + b ) = R e ( a ) + R e ( b ) Re(a+b)=Re(a)+Re(b) \newline I m ( a + b ) = I m ( a ) + I m ( b ) Im(a+b)=Im(a)+Im(b)

  • Homogeneity (Here, α \alpha is a real constant.)

R e ( α a ) = α R e ( a ) Re(\alpha a)=\alpha Re(a) \newline I m ( α a ) = α I m ( a ) Im(\alpha a)=\alpha Im(a)

It can be easily shown that they also satisfy the following properties: \newline

R e ( α ) = α Re(\alpha)=\alpha \newline I m ( α ) = 0 Im(\alpha)=0 \newline R e ( i z ) = I m ( z ) Re(iz)=-Im(z) \newline I m ( i z ) = R e ( z ) Im(iz)=Re(z) \newline

Using this, let's solve this exercise. We have:

lim y ( R e ( 2021 ) + I m ( y ) + I m ( 2021 × z ) I m ( z 2 + i z 2 ) 2021 2 ) y = \Large \lim_{y\to\infty} \left (\frac{Re(2021)+Im(y)+Im(2021\times z)}{Im(\frac{z^2+iz}{2})-\frac{2021}{2}} \right)^{y}=

lim y ( 2021 + 0 + 2021 I m ( z ) 1 2 I m ( z 2 + i z ) 2021 2 ) y = \Large \lim_{y\to\infty} \left (\frac{2021+0+2021Im(z)}{\frac{1}{2}Im(z^2+iz)-\frac{2021}{2}} \right)^{y}=

lim y ( 2021 + 2021 y 1 2 I m ( z 2 ) + 1 2 I m ( i z ) 2021 2 ) y = \Large \lim_{y\to\infty} \left (\frac{2021+2021y}{\frac{1}{2}Im(z^2)+\frac{1}{2}Im(iz)-\frac{2021}{2}} \right)^{y}=

lim y ( 2021 + 2021 y 1 2 4042 y + 1 2 R e ( z ) 2021 2 ) y = \Large \lim_{y\to\infty} \left (\frac{2021+2021y}{\frac{1}{2}4042y+\frac{1}{2}Re(z)-\frac{2021}{2}} \right)^{y}=

lim y ( 2021 + 2021 y 2021 y + 2021 2 2021 2 ) y = \Large \lim_{y\to\infty} \left (\frac{2021+2021y}{2021y+\frac{2021}{2}-\frac{2021}{2}} \right)^{y}=

lim y ( 2021 + 2021 y 2021 y ) y = \Large \lim_{y\to\infty} \left (\frac{2021+2021y}{2021y} \right)^{y}=

lim y ( 1 + y y ) y = \Large \lim_{y\to\infty} \left (\frac{1+y}{y} \right)^{y}=

lim y ( 1 + 1 y ) y = e \Large \lim_{y\to\infty} \left (1+\frac{1}{y} \right)^{y}=\boxed{e}

So the answer is 40 e = 108 \left \lfloor{40e}\right \rfloor=108 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...