Tomi's Challenges - #8

Find all pairs ( x , y ) (x, y) of positive integers such that they satisfy the following equation.

e t 2 t y 7 e t e t y 7 = ( x 7 e x 7 + y 7 e x 7 t ) t e x 7 e x 7 + y 7 e x 7 e^{t^2-ty^7}e^{te^{t-y^7}}=\left(\frac{x^7e^{x^7}+y^7e^{x^7}}{t}\right)^t e^{x^7e^{x^7}+y^7e^{x^7}}

Here, t = 21 870 000 000 . t=\num{21870000000}.

Submit your answer as the sum of sums of all such pairs. If there are no solutions, submit 0 0 , and if there are infinitely many of them, submit 9090 9090 .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tomislav Franov
Apr 22, 2021

e t 2 t y 7 e t e t y 7 = ( x 7 e x 7 + y 7 e x 7 t ) t e x 7 e x 7 + y 7 e x 7 \Large e^{t^2-ty^7}e^{te^{t-y^7}}=\left(\frac{x^7e^{x^7}+y^7e^{x^7}}{t}\right)^t\cdot e^{x^7e^{x^7}+y^7e^{x^7}}

After taking the t t -th root on both sides, we get:

e t y 7 e e t y 7 = ( x 7 e x 7 + y 7 e x 7 t ) e x 7 e x 7 + y 7 e x 7 t \Large e^{t-y^7}e^{e^{t-y^7}}=\left(\frac{x^7e^{x^7}+y^7e^{x^7}}{t}\right)\cdot e^{\frac{x^7e^{x^7}+y^7e^{x^7}}{t}}

Taking the Lambert W W function on both sides, we simplify this equation drastically.

W ( e t y 7 e e t y 7 ) = W ( ( x 7 e x 7 + y 7 e x 7 t ) e x 7 e x 7 + y 7 e x 7 t ) \Large W\left(e^{t-y^7}e^{e^{t-y^7}}\right)=W\left(\left(\frac{x^7e^{x^7}+y^7e^{x^7}}{t}\right)\cdot e^{\frac{x^7e^{x^7}+y^7e^{x^7}}{t}}\right)

e t y 7 = x 7 e x 7 + y 7 e x 7 t \Large e^{t-y^7}=\frac{x^7e^{x^7}+y^7e^{x^7}}{t}

e t e y 7 = e x 7 ( x 7 + y 7 ) t \Large \frac{e^{t}}{e^{y^7}}=\frac{e^{x^7}(x^7+y^7)}{t}

t e t e y 7 = e x 7 ( x 7 + y 7 ) \Large \frac{te^{t}}{e^{y^7}}=e^{x^7}(x^7+y^7)

t e t = e x 7 e y 7 ( x 7 + y 7 ) te^{t}=e^{x^7}e^{y^7}(x^7+y^7)

W ( t e t ) = W ( e x 7 + y 7 ( x 7 + y 7 ) ) W(te^{t})=W(e^{x^7+y^7}(x^7+y^7))

t = x 7 + y 7 t=x^7+y^7

Now we just need to show that t 7 \sqrt[7]{t} is an integer. We can easily see that t t is divisible by 1 0 7 10^7 . It can be also shown that 2187 = 3 7 2187=3^7 , by trying to divide by 3 3 multiple times. So, we have:

3 0 7 = x 7 + y 7 30^7=x^7+y^7 , which has no solutions by Fermat's last theorem .

Nice combination of FLT and algebra to make a difficult problem

William Ly - 1 month, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...