Tomi's Challenges - #9

Geometry Level 5

Let a a be a parametric curve in R 2 \mathbb{R}^2 defined by;

{ x = 2020 cos ( α + β ) cos γ 2021 sin ( α + β ) sin γ y = 2020 sin ( α + β ) cos γ + 2021 cos ( α + β ) sin γ \begin{cases}x=2020\cos (\alpha+\beta)\cos \gamma-2021\sin(\alpha+\beta)\sin\gamma\\ y=2020\sin (\alpha+\beta)\cos \gamma+2021\cos(\alpha+\beta)\sin\gamma\end{cases}

A square is circumscribed around the shape which is formed by all points which this curve goes through, for any parameters α , β , γ \alpha, \beta, \gamma . Find the maximum area of the region inside the square such that no point on this curve is in it.

Submit your answer as P \left \lfloor{P}\right \rfloor , where P P is the area of the region and \left \lfloor{\cdot}\right \rfloor is the floor function .


The answer is 16325068.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tomislav Franov
Apr 23, 2021

When you have a parametric curve, it's also common to describe it using a vector:

[ x y ] = [ 2020 cos ( α + β ) cos γ 2021 sin ( α + β ) sin γ 2020 sin ( α + β ) cos γ + 2021 cos ( α + β ) sin γ ] \begin{bmatrix} x\\ y \end{bmatrix}=\begin{bmatrix} 2020\cos (\alpha+\beta)\cos \gamma-2021\sin(\alpha+\beta)\sin\gamma\\ 2020\sin (\alpha+\beta)\cos \gamma+2021\cos(\alpha+\beta)\sin\gamma \end{bmatrix}

Without loss of generality, let θ = α + β \theta=\alpha+\beta .

[ x y ] = [ 2020 cos ( θ ) cos γ 2021 sin ( θ ) sin γ 2020 sin ( θ ) cos γ + 2021 cos ( θ ) sin γ ] \begin{bmatrix} x\\ y \end{bmatrix}=\begin{bmatrix} 2020\cos (\theta)\cos \gamma-2021\sin(\theta)\sin\gamma\\ 2020\sin (\theta)\cos \gamma+2021\cos(\theta)\sin\gamma \end{bmatrix}

Notice that this vector is of the form

[ x cos ( t ) y sin ( t ) x sin ( t ) + y cos ( t ) ] = [ cos ( t ) sin ( t ) sin ( t ) cos ( t ) ] [ x y ] \begin{bmatrix} x\cos(t)-y\sin(t)\\ x\sin(t)+y\cos(t) \end{bmatrix}=\begin{bmatrix} \cos(t) & -\sin(t)\\ \sin(t) & \cos(t) \end{bmatrix}\ \begin{bmatrix} x\\ y \end{bmatrix}

Rewriting our vector, we get:

[ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] [ 2020 cos ( γ ) 2021 sin ( γ ) ] \begin{bmatrix} \cos(\theta) & -\sin(\theta)\\ \sin(\theta) & \cos(\theta) \end{bmatrix}\ \begin{bmatrix} 2020\cos(\gamma)\\ 2021\sin(\gamma) \end{bmatrix}

We can now see that this parametric curve is nothing but an ellipse with the shorter radius being 2020 2020 , the longer one being 2021 2021 , which is being rotated by an arbitrary θ \theta . By rotating it around its origin, we get a ring as the union of all points which the ellipse goes through, with its inner radius being 2020 2020 and width being 2021 2020 = 1 2021-2020=1 . If we circumscribe a square around this ring, we are left to compute the complement of the area of the ring.

Here is a visualization:

So the area is P = 202 0 2 π + 404 2 2 202 1 2 π = 404 2 2 + ( 2020 2021 ) ( 2020 + 2021 ) π = 404 2 2 4041 π P=2020^2\pi+4042^2-2021^2\pi=4042^2+(2020-2021)(2020+2021)\pi=4042^2-4041\pi . After computing P P , we get 16325068.82 \boxed{16325068.82} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...