Too big to compute

Find the last 2 digits of 691 1 699 0 9613 . \Large 6911^{6990^{9613}}.

31 21 71 01 41 51 11 61

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 20, 2016

6911 699 0 9613 691 1 699 0 9613 mod ϕ ( 100 ) (mod 100 ) As 6911 and 100 are coprimes, we can apply Euler’s theorem. 691 1 699 0 9613 mod 40 (mod 100) Euler’s totient function ϕ ( 100 ) = 40 691 1 3 0 9613 mod 40 (mod 100) 6990 = 174 × 40 + 30 691 1 0 (mod 100) 3 0 n 0 (mod 40) for n 3 1 (mod 100) \begin{aligned} \color{#3D99F6}{6911}^{6990^{9613}} & \equiv 6911^{\color{#3D99F6}{6990^{9613} \text{ mod } \phi (100)}} \text{ (mod }\color{#3D99F6}{100}) \quad \quad \small \color{#3D99F6}{\text{As 6911 and 100 are coprimes, we can apply Euler's theorem.}} \\ & \equiv 6911^{6990^{9613} \text{ mod } 40} \text{ (mod 100)} \quad \quad \small \color{#3D99F6}{\text{Euler's totient function } \phi(100) = 40} \\ & \equiv 6911^{\color{#3D99F6}{30^{9613} \text{ mod } 40}} \text{ (mod 100)} \quad \quad \small \color{#3D99F6}{6990 = 174\times 40 + 30} \\ & \equiv 6911^{\color{#3D99F6}{0}} \text{ (mod 100)} \quad \quad \small \color{#3D99F6}{30^n \equiv 0 \text{ (mod 40) for } n \ge 3} \\ & \equiv \boxed{1} \text{ (mod 100)} \end{aligned}

Great explanation

Abdur Rehman Zahid - 5 years ago

Lol this is the second time we posted the same solution to a problem, I using Carmichael's and you using Euler's

Abdur Rehman Zahid - 5 years ago

Log in to reply

I am still to learn up Carmichael's. Frankly, I started learning Number Theory after joining Brilliant.org.

Chew-Seong Cheong - 5 years ago

Log in to reply

No worries :)

Abdur Rehman Zahid - 5 years ago

691 1 699 0 9613 1 1 699 0 9613 ( m o d 100 ) 1 1 λ ( 100 ) = 1 1 20 1 ( m o d 100 ) 699 0 9613 ( m o d 20 ) 699 0 9613 0 ( m o d 20 ) 1 1 699 0 9613 1 1 0 01 ( m o d 100 ) 6911^{6990^{9613}}\equiv 11^{6990^{9613}}\pmod{100}\\ 11^{\lambda(100)}=11^{20}\equiv 1\pmod{100}\\ \implies \boxed{6990^{9613}\pmod{20}}\\ 6990^{9613}\equiv 0\pmod{20}\\ \implies 11^{6990^{9613}}\equiv 11^0\equiv \boxed{01}\pmod{100}

Did the same

Aditya Kumar - 5 years ago

Clearly, 6911 11 ( m o d 100 ) 6911\equiv 11(mod\quad 100) , so now we are working with the powers of 11 11 . Let n k ( m o d 10 ) n\equiv k(mod\quad 10) , and note that 11 n 10 k + 1 ( m o d 100 ) { 11 }^{ n }\equiv 10k+1(mod\quad 100) . As 6990 0 ( m o d 10 ) 6990\equiv 0(mod\quad 10) , then 11 6990 1 ( m o d 100 ) { 11 }^{ 6990 }\equiv 1(mod\quad 100) , therefore, 691 1 699 0 9613 1 ( m o d 100 ) \ 6911^{6990^{9613}}\equiv 1(mod\quad 100)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...