sin 5 θ = 5 sin θ ( 1 − sin 2 p sin 2 θ ) ( 1 − sin 2 q sin 2 θ )
If the equation above is a trigonometric identities for constants p and q such that 0 ≤ p , q ≤ 2 π , find the value of p + q .
Clue : Use the equation z 1 0 − 1 = 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice. I liked that you figured out what the exact values of p and q are.
Can you generalize this identity to
( sin ( 2 n + 1 ) θ ) = ( 2 n + 1 ) ( sin θ ) ∏ ( 1 − sin 2 p i sin 2 θ ) ?
Log in to reply
Hello Sir. This can be generalized using chebyshev polynomial of the second kind. I have posted it here . I f you have a method other than mine, I'd like to see it, please.
I used the same method!!
Did the same
Using the identity e i θ ≡ cos θ + i sin θ , where i = − 1 :
We have, e i 5 θ = ( e i θ ) 5
⇒ cos 5 θ + i sin 5 θ = ( cos θ + i sin θ ) 5 = cos 5 θ + i 5 cos 4 θ sin θ − 1 0 cos 3 θ sin 2 θ − i 1 0 cos 2 θ sin 3 θ + 5 cos θ sin 4 θ + i sin 5 θ
Equating the imaginary part:
sin 5 θ = 5 cos 4 θ sin θ − 1 0 cos 2 θ sin 3 θ + sin 5 θ
= 5 sin θ ( cos 4 θ − 2 cos 2 θ sin 2 θ + 5 1 sin 4 θ )
= 5 sin θ ( cos 4 θ − 2 cos 2 θ sin 2 θ + sin 4 θ − 5 4 sin 4 θ )
= 5 sin θ ( [ cos 2 θ − sin 2 θ ] 2 − 5 4 sin 4 θ )
= 5 sin θ ( [ 1 − 2 sin 2 θ ] 2 − 5 4 sin 4 θ )
= 5 sin θ ( 1 − 4 sin 2 θ + 5 1 6 sin 4 θ )
= 5 sin θ ( 1 − [ 2 + 5 2 ] sin 2 θ ) ( 1 − [ 2 − 5 2 ] sin 2 θ )
⇒ sin 2 p = 2 + 5 2 1 sin 2 q = 2 − 5 2 1
⇒ p = 0 . 6 2 8 3 , q = 1 . 2 5 6 6 ⇒ p + q = 1 . 8 8 5
Could you please explain how it came?
( cos θ + i sin θ ) 5 = cos 5 θ + i 5 cos 4 θ sin θ − 1 0 cos 3 θ sin 2 θ − i 1 0 cos 2 θ sin 3 θ + 5 cos θ sin 4 θ + i sin 5 θ
Log in to reply
Hey, It is just the binomial expansion of ( cos θ + ι sin θ ) 5 .
I hope you are aware of binomial expansion of type ( a + b ) n .
( a + b ) 5 = a 5 + 5 a 4 b + 1 0 a 3 b 2 + 1 0 a 2 b 3 + 5 a b 4 + b 5
( cos θ + i sin 2 θ ) 5 = cos 5 θ + 5 cos 4 θ ( i sin θ ) + 1 0 cos 3 θ ( i 2 sin 2 θ ) + 1 0 cos 2 θ ( i 3 sin 3 θ ) + 5 cos θ ( i 4 sin 4 θ ) + i 5 sin 5 θ = cos 5 θ + i 5 cos 4 θ sin θ − 1 0 cos 3 θ sin 2 θ − i 1 0 cos 2 θ sin 3 θ + 5 cos θ sin 4 θ + i sin 5 θ
Problem Loading...
Note Loading...
Set Loading...
Chew-Seong Cheong's solution is universal but my solution only for this question.
s i n 5 θ = 0 & s i n θ = 0 i f s i n 2 θ = s i n 2 p o r , s i n 2 θ = s i n 2 q
If we only consider θ ∈ ( 0 , 2 π )
f o r s i n 5 θ = 0 & s i n θ = 0 , 5 θ = π , 2 π ( o n l y t w o s o l n ) ⇒ θ = 5 π , 5 2 π
one of them is p & other is q,so
p + q = 5 π + 5 2 π = 5 3 π = 1 . 8 8 5