Too Complex! Part- III

Geometry Level 4

sin 5 θ = 5 sin θ ( 1 sin 2 θ sin 2 p ) ( 1 sin 2 θ sin 2 q ) \sin 5\theta = 5 \sin \theta \left ( 1 - \frac{\sin^{2} \theta}{\sin ^{2} p} \right) \left( 1 - \frac{\sin^{2} \theta}{\sin ^{2} q} \right)

If the equation above is a trigonometric identities for constants p p and q q such that 0 p , q π 2 0 \leq p,q\leq \frac \pi2 , find the value of p + q p + q .

Clue : Use the equation z 10 1 = 0 z^{10} - 1 = 0


The answer is 1.885.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
Oct 29, 2014

Chew-Seong Cheong's solution is universal but my solution only for this question.

s i n 5 θ = 0 & s i n θ 0 i f s i n 2 θ = s i n 2 p o r , s i n 2 θ = s i n 2 q sin5\theta =0\quad \& \quad sin\theta \neq 0\quad if\\ \\ { sin }^{ 2 }\theta ={ sin }^{ 2 }p\\ \\ or,\quad { sin }^{ 2 }\theta ={ sin }^{ 2 }q

If we only consider θ ( 0 , π 2 ) \theta \in \left( 0,\cfrac { \pi }{ 2 } \right)

f o r s i n 5 θ = 0 & s i n θ 0 , 5 θ = π , 2 π ( o n l y t w o s o l n ) θ = π 5 , 2 π 5 for\quad sin5\theta =0\quad \& \quad sin\theta \neq 0,\\ \\ 5\theta =\pi ,2\pi (only\quad two\quad { sol }^{ n })\Rightarrow \theta =\cfrac { \pi }{ 5 } ,\cfrac { 2\pi }{ 5 }

one of them is p & other is q,so

p + q = π 5 + 2 π 5 = 3 π 5 = 1.885 p+q=\cfrac { \pi }{ 5 } +\cfrac { 2\pi }{ 5 } =\cfrac { 3\pi }{ 5 } =1.885

Nice. I liked that you figured out what the exact values of p p and q q are.

Can you generalize this identity to

( sin ( 2 n + 1 ) θ ) = ( 2 n + 1 ) ( sin θ ) ( 1 sin 2 θ sin 2 p i ) ? \left( \sin ( 2n + 1 ) \theta \right) = (2n+1)( \sin \theta ) \prod ( 1 - \frac{ \sin ^2 \theta } { \sin ^ 2 p_i } )?

Calvin Lin Staff - 6 years, 7 months ago

Log in to reply

Hello Sir. This can be generalized using chebyshev polynomial of the second kind. I have posted it here . I f you have a method other than mine, I'd like to see it, please.

Ishan Singh - 5 years, 8 months ago

I used the same method!!

Kunal Gupta - 6 years, 7 months ago

Did the same

Aishwary Omkar - 6 years, 5 months ago
Chew-Seong Cheong
Oct 29, 2014

Using the identity e i θ cos θ + i sin θ e^{i\theta} \equiv \cos{\theta} + i\sin{\theta} , where i = 1 i = \sqrt {-1} :

We have, e i 5 θ = ( e i θ ) 5 e^{i5\theta} = (e^{i\theta})^5

cos 5 θ + i sin 5 θ = ( cos θ + i sin θ ) 5 \Rightarrow \cos{5\theta} + i\sin{5\theta} = (\cos{\theta} + i\sin{\theta})^5 = cos 5 θ + i 5 cos 4 θ sin θ 10 cos 3 θ sin 2 θ i 10 cos 2 θ sin 3 θ + 5 cos θ sin 4 θ + i sin 5 θ = \cos^5{\theta} + i 5 \cos ^4 {\theta} \sin {\theta} - 10 \cos ^3 {\theta} \sin ^2 {\theta} - i 10 \cos ^2 {\theta} \sin ^3 {\theta} + 5 \cos {\theta} \sin ^4 {\theta} + i \sin ^5 {\theta}

Equating the imaginary part:

sin 5 θ = 5 cos 4 θ sin θ 10 cos 2 θ sin 3 θ + sin 5 θ \sin {5\theta} = 5 \cos ^4 {\theta} \sin {\theta} - 10 \cos ^2 {\theta} \sin ^3 {\theta} + \sin ^5 {\theta}

= 5 sin θ ( cos 4 θ 2 cos 2 θ sin 2 θ + 1 5 sin 4 θ ) \quad \quad = 5\sin {\theta} (\cos ^4 {\theta} - 2 \cos ^2 {\theta} \sin ^2 {\theta} + \frac {1}{5} \sin ^4 {\theta})

= 5 sin θ ( cos 4 θ 2 cos 2 θ sin 2 θ + sin 4 θ 4 5 sin 4 θ ) \quad \quad = 5\sin {\theta} (\cos ^4 {\theta} - 2 \cos ^2 {\theta} \sin ^2 {\theta} + \sin^4{\theta} - \frac {4}{5} \sin ^4 {\theta})

= 5 sin θ ( [ cos 2 θ sin 2 θ ] 2 4 5 sin 4 θ ) \quad \quad = 5\sin {\theta} ( [\cos ^2 {\theta} - \sin ^2 {\theta} ] ^2 - \frac {4}{5} \sin ^4 {\theta})

= 5 sin θ ( [ 1 2 sin 2 θ ] 2 4 5 sin 4 θ ) \quad \quad = 5\sin {\theta} ([1 - 2 \sin ^2 {\theta} ] ^2 - \frac {4}{5} \sin ^4 {\theta})

= 5 sin θ ( 1 4 sin 2 θ + 16 5 sin 4 θ ) \quad \quad = 5\sin {\theta} (1 - 4 \sin ^2 {\theta} + \frac {16}{5} \sin ^4 {\theta})

= 5 sin θ ( 1 [ 2 + 2 5 ] sin 2 θ ) ( 1 [ 2 2 5 ] sin 2 θ ) \quad \quad = 5\sin {\theta} (1 - [2+\frac {2}{\sqrt{5}}] \sin ^2 {\theta} ) (1 - [2-\frac {2}{\sqrt{5}}] \sin ^2 {\theta} )

sin 2 p = 1 2 + 2 5 sin 2 q = 1 2 2 5 \Rightarrow \sin^2 {p} = \dfrac {1} {2+\frac {2}{\sqrt{5}}} \quad \quad \sin^2 {q} = \dfrac {1} {2-\frac {2}{\sqrt{5}}}

p = 0.6283 , q = 1.2566 p + q = 1.885 \Rightarrow p = 0.6283, \quad q = 1.2566 \quad \Rightarrow p + q = \boxed {1.885}

Could you please explain how it came?

( cos θ + i sin θ ) 5 (\cos{\theta} + i\sin{\theta})^5 = cos 5 θ + i 5 cos 4 θ sin θ 10 cos 3 θ sin 2 θ i 10 cos 2 θ sin 3 θ + 5 cos θ sin 4 θ + i sin 5 θ = \cos^5{\theta} + i 5 \cos ^4 {\theta} \sin {\theta} - 10 \cos ^3 {\theta} \sin ^2 {\theta} - i 10 \cos ^2 {\theta} \sin ^3 {\theta} + 5 \cos {\theta} \sin ^4 {\theta} + i \sin ^5 {\theta}

Anandhu Raj - 6 years, 3 months ago

Log in to reply

Hey, It is just the binomial expansion of ( cos θ + ι sin θ ) 5 (\cos\theta + \iota \sin\theta)^{5} .

I hope you are aware of binomial expansion of type ( a + b ) n (a+b) ^{n} .

Prakhar Gupta - 6 years, 1 month ago

Log in to reply

Oh! didn't noticed that. Thank You. :)

Anandhu Raj - 5 years, 11 months ago

( a + b ) 5 = a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a b 4 + b 5 (a+b)^5 = a^5 + 5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5

( cos θ + i sin 2 θ ) 5 = cos 5 θ + 5 cos 4 θ ( i sin θ ) + 10 cos 3 θ ( i 2 sin 2 θ ) + 10 cos 2 θ ( i 3 sin 3 θ ) + 5 cos θ ( i 4 sin 4 θ ) + i 5 sin 5 θ = cos 5 θ + i 5 cos 4 θ sin θ 10 cos 3 θ sin 2 θ i 10 cos 2 θ sin 3 θ + 5 cos θ sin 4 θ + i sin 5 θ (\cos{\theta} + i\sin^2{\theta})^5 \\ = \cos^5{\theta} + 5\cos^4{\theta} (\color{#D61F06}{i}\sin{\theta}) + 10\cos^3{\theta} (\color{#D61F06}{i^2} \sin^2{\theta}) + 10\cos^2{\theta} (\color{#D61F06}{i^3} \sin^3{\theta}) + 5\cos{\theta} (\color{#D61F06}{i^4} \sin^4{\theta}) + \color{#D61F06}{i^5} \sin^5{\theta} \\ = \cos^5{\theta} \color{#D61F06}{+i}5\cos^4{\theta} \sin{\theta} \color{#D61F06}{-} 10\cos^3{\theta} \sin^2{\theta} \color{#D61F06}{-i}10\cos^2{\theta}\sin^3{\theta} \color{#D61F06}{+} 5\cos{\theta}\sin^4{\theta} \color{#D61F06}{+i} \sin^5{\theta}

Chew-Seong Cheong - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...