Too Difficult? 2

Calculus Level 4

2 ( x 1 ) ( x + 1 ) ( x 4 + 1 ) ( x 2 + 1 ) 2 d x = ? \large \sqrt2 \int \dfrac{(x-1)(x+1)}{\sqrt{(x^4+1)(x^2+1)^2}} \, dx = \, ?

Notation : C C denotes the constant of arbitration.

1 2 arctan x 2 + 1 + C \dfrac1{\sqrt2} \arctan\sqrt{x^2+1}+C arctan x 2 + 1 x 2 + C \arctan\sqrt{x^2+\dfrac1{x^2}}+C arctan 1 2 ( x 2 + 1 x 2 ) + C \arctan\sqrt{ \dfrac12 \left(x^2+\dfrac1{x^2}\right)}+C 1 2 arctan x 2 + 1 x 2 + C \dfrac12\arctan\sqrt{x^2+\dfrac1{x^2}}+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohammad Hamdar
Jan 12, 2016

T h e i n t e g r a l m a y b e w r i t t e n a s x 2 1 x ( x 2 + 1 ) x 2 + 1 x 2 d x = 1 1 x 2 ( x + 1 x ) ( x + 1 x ) 2 2 d x U s e t h e s u b s t i t u t i o n t = x + 1 x w h i c h t r a n s f o r m s t h e i n t e g r a l i n t o 1 t t 2 2 d t . l e t t = 2 sec θ w h i c h t r a n s f o r m s t h e i n t e g r a l i n t o 1 2 d θ = θ 2 + c w h i c h e q u a l s 1 2 arctan 1 2 ( x 2 + 1 x 2 ) + C . The\quad integral\quad may\quad be\quad written\quad as\int \frac { x^{ 2 }-1 }{ x(x^{ 2 }+1)\sqrt { x^{ 2 }+\frac { 1 }{ { x }^{ 2 } } } } \, dx\\ =\int \frac { 1-\frac { 1 }{ { x }^{ 2 } } }{ (x+\frac { 1 }{ x } )\sqrt { (x+\frac { 1 }{ x } )^{ 2 }-2 } } \, dx\\ Use\quad the\quad substitution\quad t=x+\frac { 1 }{ x } \\ which\quad transforms\quad the\quad integral\quad into\int \frac { 1 }{ t\sqrt { t^{ 2 }-2 } } \, dt.\\ let\quad t=\sqrt { 2 } \sec { \theta } \\ which\quad transforms\quad the\quad integral\quad into\int \frac { 1 }{ \sqrt { 2 } } \, d\theta =\frac { \theta }{ \sqrt { 2 } } +c\\ which\quad equals\quad \frac { 1 }{ \sqrt { 2 } } \arctan \sqrt { \frac { 1 }{ 2 } (x^{ 2 }+\frac { 1 }{ x^{ 2 } } ) } +C.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...