Too Difficult? 4

Calculus Level 4

0 1 ln ( x + 1 ) x 2 + 1 d x = ln ( b π a ) \large \int_0^1 \dfrac{\ln(x+1)}{x^2+1} \, dx = \ln \left ( \sqrt[a]{b^\pi} \right)

If the equation above holds true for positive integers a a and b b , find the minimum value of a + b a+b .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohammad Hamdar
Apr 8, 2016

I = 0 1 ln ( x + 1 ) x 2 + 1 d x U s e t h e s u b s t i t u t i o n x = tan t . T h e n , d x = sec 2 t d t t h u s , I = 0 π 4 ln ( 1 + tan t ) d t = 0 π 4 ln ( 1 + tan ( π 4 t ) ) d t U s i n g t h e i d e n t i t y tan ( a b ) = tan a tan b 1 + tan a tan b w e g e t I = 0 π 4 ln ( 2 1 + tan t ) d x = 0 π 4 ln 2 d x I H e n c e , 2 I = ln 2 0 π 4 d x s o , I = π 8 ln 2 I=\int _{ 0 }^{ 1 }{ \frac { \ln { (x+1) } }{ { x }^{ 2 }+1 } dx } \\ Use\quad the\quad substitution\quad x=\tan { t. } Then, \quad dx=\sec ^{ 2 }{ t } dt\\ thus,\quad I=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \ln { (1+\tan { t) } dt } } \\ \quad \quad \quad \quad \quad =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \ln { (1+\tan { (\frac { \pi }{ 4 } } -t)) } } dt\\ Using\quad the\quad identity\quad \tan { (a-b)=\frac { \tan { a } -\tan { b } }{ 1+\tan { a } \tan { b } } } \quad we\quad get\\ I=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \ln { (\frac { 2 }{ 1+\tan { t } } } } )dx\quad =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \ln { 2 } dx } -I\\ Hence,\quad 2I=\ln { 2 } \int _{ 0 }^{ \frac { \pi }{ 4 } }{ dx } \quad so,\quad I=\frac { \pi }{ 8 } \ln { 2 } \\ .

I = ln 2 π 8 I=\ln { \sqrt [ 8 ]{ { 2 }^{ \pi } } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...