Too Easy (or too Difficult?)

Geometry Level 4

Determine the minimum value of

sec 4 α tan 2 β + sec 4 β tan 2 α \frac{\sec^4\alpha}{\tan^2\beta}+\frac{\sec^4\beta}{\tan^2\alpha}

over all α , β k π 2 \alpha,\beta \neq \frac{k\pi}{2} where k Z k\in\mathbb{Z} .


Details and Assumptions:

Z \mathbb{Z} is the set of integers.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ameya Salankar
Jun 17, 2014

Set a = tan 2 α a=\tan^2\alpha and b = tan 2 β b=\tan^2\beta . The problem now reduces to finding the minimum value of

( a + 1 ) 2 b + ( b + 1 ) 2 a \frac{(a+1)^2}{b}+\frac{(b+1)^2}{a} , with a , b 0 a,b \geq 0 .

We have,

( a + 1 ) 2 b + ( b + 1 ) 2 a = a 2 + 2 a + 1 b + b 2 + 2 b + 1 a \frac{(a+1)^2}{b}+\frac{(b+1)^2}{a} = \frac{a^2+2a+1}{b}+\frac{b^2+2b+1}{a} = ( a 2 b + 1 b + b 2 a + 1 a ) + 2 ( a b + b a ) = \left(\frac{a^2}{b}+\frac{1}{b}+\frac{b^2}{a}+\frac{1}{a}\right)+2\left(\frac{a}{b}+\frac{b}{a}\right)

Applying the A.M.-G.M. inequality, we get-

( a 2 b + 1 b + b 2 a + 1 a ) + 2 ( a b + b a ) 4 a 2 b × 1 b × b 2 a × 1 a 4 + 4 a b × b a = 8 \left(\frac{a^2}{b}+\frac{1}{b}+\frac{b^2}{a}+\frac{1}{a}\right)+2\left(\frac{a}{b}+\frac{b}{a}\right)\geq4\sqrt[4]{\frac{a^2}{b}\times\frac{1}{b}\times\frac{b^2}{a}\times\frac{1}{a}}+4\sqrt{\frac{a}{b}\times\frac{b}{a}} = \boxed{8} .

You could apply AM-GM directly to each term, to get

( a + 1 ) 2 b + ( b + 1 ) 2 a 4 a b + 4 b a 8 \frac{ (a+1)^2}{b} + \frac{ (b+1)^2}{a} \geq \frac{ 4a}{b} + \frac{4b}{a} \geq 8

Equality holds if and only if a = b = 1 a = b = 1 .

Calvin Lin Staff - 6 years, 12 months ago

Log in to reply

Hmm... yeah! Wonder why I didn't think of that earlier.

Ameya Salankar - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...