∫ 0 1 ∫ 0 1 − x 2 ( 1 − x 2 − y 2 ) d y d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t I = ∫ 0 1 ∫ 0 1 − x 2 ( 1 − x 2 − y 2 ) d y d x = ∫ 0 1 I 0 d x [ w h e r e I 0 = ∫ 0 1 − x 2 1 − x 2 − y 2 d y ] N o w i n i n t e g r a l I 0 w e a r e i n t e g r a t i n g w i t h r e s p e c t t o y . S o , x i s c o n s t a n t i n I 0
I 0 = ∫ 0 1 − x 2 1 − x 2 − y 2 d y = y − y x 2 − 3 y 3 f r o m 0 t o 1 − x 2 O n s i m p l i f y i n g w e g e t I 0 = 3 2 ( 1 − x 2 ) 2 3
S o , I = ∫ 0 1 I 0 d x = 3 2 ∫ 0 1 ( 1 − x 2 ) 2 3 d x L e t x = s i n T d x = c o s T d T w h e n x → 0 T → 0 a n d x → 1 T → 2 π
∴ I = 3 2 ∫ 0 2 π c o s 3 T . c o s T d T = 3 2 ∫ 0 2 π c o s 4 T d T = 3 2 ∫ 0 2 π ( 2 1 + c o s 2 T ) 2 d T = 6 1 ∫ 0 2 π 1 + c o s 2 2 T + 2 c o s 2 T d T = 6 1 ∫ 0 2 π 1 + ( 2 1 + c o s 4 T ) + 2 c o s 2 T d T = 6 1 ( 2 3 T + 8 s i n 4 T + s i n 2 T ) f r o m T = 0 t o 2 π = 6 1 ( 4 3 π ) = 8 π
Well done ! Nice solution ! :D
thnk you ..
Use of gamma function make it less calculative
Yes ...realised it when saw others solutions .....
Problem Loading...
Note Loading...
Set Loading...
The region we're integrating over is the quarter of the unit circle in the first quadrant of the Cartesian coordinate plane:
This integral is fairly difficult to evaluate using Cartesian coordinates, but changing to polar coordinates makes it much easier: 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 − x 2 ⇒ 0 ≤ r ≤ 1 , 0 ≤ θ ≤ 2 π 1 − x 2 − y 2 ⇒ 1 − r 2 d y d x ⇒ r d r d θ
Now we can evaluate: ∫ 0 2 π ∫ 0 1 ( 1 − r 2 ) r d r d θ = ∫ 0 2 π d θ ∫ 0 1 ( r − r 3 ) d r = 2 π ( 2 r 2 − 4 r 4 ) ∣ ∣ ∣ ∣ 0 1 = 2 π ( 2 1 − 4 1 ) = 8 π