Too Hard?

Algebra Level 3

Given that f ( 2 x 3 ) = f ( 2 x ) + 1 f ( 2 x ) 1 f(2x-3)=\dfrac{f(2x)+1}{f(2x)-1} and f ( 7 ) = 5 f(7) = 5 , find f ( 10 ) f ( 4 ) \dfrac{f(10)}{f(4)} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let's find f ( 10 ) f(10) first,

We use x = 5 x=5 to find the value of f ( 10 ) f(10)

f ( 2 × 5 3 ) = f ( 2 × 5 ) + 1 f ( 2 × 5 ) 1 f(2\times 5 - 3) = \frac{f(2\times 5) + 1}{f(2\times 5)-1}

f ( 7 ) = f ( 10 ) + 1 f ( 10 ) 1 f(7) = \frac{f(10) +1}{f(10) - 1}

5 = f ( 10 ) + 1 f ( 10 ) 1 5 = \frac{f(10) +1}{f(10) - 1}

5 ( f ( 10 ) 1 ) = f ( 10 ) + 1 5(f(10)-1) = f(10) +1

5 f ( 10 ) 5 = f ( 10 ) + 1 5f(10) - 5 = f(10) +1

4 f ( 10 ) = 6 4f(10)= 6

f ( 10 ) = 3 2 f(10) = \frac{3}{2}

Now let's find f ( 4 ) f(4) ,

We use x = 3 1 2 x=3\frac{1}{2} to find the value of f ( 4 ) f(4)

f ( 2 × 3 1 2 3 ) = f ( 2 × 3 1 2 ) + 1 f ( 2 × 3 1 2 ) 1 f(2\times 3\frac{1}{2} - 3) = \frac{f(2\times 3\frac{1}{2}) + 1}{f(2\times 3\frac{1}{2})-1}

f ( 4 ) = f ( 7 ) + 1 f ( 7 ) 1 f(4) = \frac{f(7) +1}{f(7) - 1}

f ( 4 ) = 5 + 1 5 1 f(4) = \frac{5 +1}{5-1}

f ( 4 ) = 3 2 f(4) = \frac{3}{2}

Now find f ( 10 ) f ( 4 ) \frac { f(10)}{f(4)}

f ( 10 ) f ( 4 ) = 3 2 3 2 = 1 \frac { f(10)}{f(4)}= \frac{\frac{3}{2}}{\frac{3}{2}} = \boxed{1}

Shaun Leong
Feb 9, 2016

f ( 2 x 3 ) = f ( 2 x ) + 1 f ( 2 x ) 1 ( 1 ) f(2x-3)=\dfrac {f(2x)+1}{f(2x)-1} -------- (1) f ( 2 x 3 ) f ( 2 x ) f ( 2 x 3 ) = f ( 2 x ) + 1 f(2x-3)f(2x)-f(2x-3)=f(2x)+1 f ( 2 x ) = f ( 2 x 3 ) + 1 f ( 2 x 3 ) 1 f(2x)=\dfrac {f(2x-3)+1}{f(2x-3)-1} Put 2 x 2 x + 3 2x \rightarrow 2x+3 : f ( 2 x + 3 ) = f ( 2 x ) + 1 f ( 2 x ) 1 = f ( 2 x 3 ) f(2x+3)=\dfrac {f(2x)+1}{f(2x)-1}=f(2x-3) from equation (1).

Thus f ( 10 ) = f ( 4 ) f(10)=f(4) and f ( 10 ) f ( 4 ) \dfrac {f(10)}{f(4)} = f ( 7 + 3 ) f ( 7 3 ) =\dfrac {f(7+3)}{f(7-3)} = 1 =\boxed{1}

Very special and very cool approach! (upvoted) :P

展豪 張 - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...