Too large for graphing

Calculus Level 5

0 ( 1 x 2016 2016 + x 2016 ) d x \int _{ 0 }^{ \infty }{ \left( 1-\dfrac { { x }^{ 2016 } }{ 2016+{ x }^{ 2016 } } \right) } \, dx

If the integral above can be expressed as b c / b π csc π a b^{-c/b} \pi \csc \dfrac\pi a

where a , b , c a,b,c and d d are positive integers with b , c b,c coprime, find a + 2 b + c a+2b+c .


The answer is 8063.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Jan 30, 2016

Using 0 1 1 + x n d x = π n csc ( π n ) ( 1 ) \large{\displaystyle \int^{\infty}_{0} \frac{1}{1+x^{n}}dx=\frac{\pi}{n}\csc \left(\frac{\pi}{n}\right) \qquad (1)} ,

This has been proved a lot of times on brilliant. Hint put y = 1 / ( 1 + x n ) y=1/(1+x^n) and beta function.

Now in ( 1 ) (1) put x = t a x=\frac{t}{a} , thus we have

0 1 1 + t n a n d t = a π n csc ( π n ) \large{\displaystyle \int^{\infty}_{0} \frac{1}{1+\frac{t^{n}}{a^n}}dt=a \frac{\pi}{n}\csc \left(\frac{\pi}{n}\right)}

The given integral is

0 1 1 + x 2016 2016 d x \large{\displaystyle \int^{\infty}_{0} \frac{1}{1+\frac{x^{2016}}{2016}}dx}

Here a = 201 6 1 2016 ; n = 2016 \large{a=2016^{\frac{1}{2016}};n=2016}

The final answer is

π 201 6 2015 2016 csc ( π 2016 ) \Large{\frac{\pi}{2016^{\frac{2015}{2016}}}\csc \left(\frac{\pi}{2016}\right)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...