There is a positive integer , such that all digits of are .
The remainder obtained on dividing by is .
Find the last three digits of the quotient thus obtained.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
quite easy,needn't to find whole number: l e t x b e t h e q u o t i e n t w h e n m u l t i p l i e d b y 2 0 0 3 g i v e s 5 5 5 5 5 5 5 5 . . . . . 5 5 5 5 d o n ′ t k n o w t h e n u m b e r o f f i v e s . i n o r d e r t o o b t a i n f i r s t 5 : 3 s h o u l d b e m u l t i p l i e d b y 5 , s o u n i t d i g i t i s 5 . 3 × 5 i s 1 5 t h e r e f o r e i n o r d e r t o m a k e t e n s d i g i t t e n w e n e e d t o a d d 4 t o t h e t e n ′ s d i g i t o r f i n d t h e n u m b e r w h e n m u l t i p l i e d b y 3 g i v e s u n i t d i g i t 4 . t h e n u m b e r i s 8 s o t h e t e n ′ s d i g i t i s 8 . n o w t h e h u n d r e d ′ s p l a c e , s i n c e 2 i s a l r e a d y i s h u n d r e d ′ s d i g i t i n o r d e r t o g e t 5 n e e d t o a d d 3 o r f i n d t h e n u m b e r w h e n m u l t i p l i e d b y 3 g i v e s u n i t d i g i t 3 , h e n c e t h e n u m b e r i s 1 a n d h e n c e a n s w e r i s 1 8 5