Too many 5's

Algebra Level 5

There is a positive integer x x , such that all digits of x x are 5 5 .

The remainder obtained on dividing x x by 2003 2003 is 0 0 .

Find the last three digits of the quotient thus obtained.


The answer is 185.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Utkarsh Rajput
Jun 15, 2014

quite easy,needn't to find whole number: l e t x b e t h e q u o t i e n t w h e n m u l t i p l i e d b y 2003 g i v e s 55555555.....5555 d o n t k n o w t h e n u m b e r o f f i v e s . i n o r d e r t o o b t a i n f i r s t 5 : 3 s h o u l d b e m u l t i p l i e d b y 5 , s o u n i t d i g i t i s 5. 3 × 5 i s 15 t h e r e f o r e i n o r d e r t o m a k e t e n s d i g i t t e n w e n e e d t o a d d 4 t o t h e t e n s d i g i t o r f i n d t h e n u m b e r w h e n m u l t i p l i e d b y 3 g i v e s u n i t d i g i t 4. t h e n u m b e r i s 8 s o t h e t e n s d i g i t i s 8. n o w t h e h u n d r e d s p l a c e , s i n c e 2 i s a l r e a d y i s h u n d r e d s d i g i t i n o r d e r t o g e t 5 n e e d t o a d d 3 o r f i n d t h e n u m b e r w h e n m u l t i p l i e d b y 3 g i v e s u n i t d i g i t 3 , h e n c e t h e n u m b e r i s 1 a n d h e n c e a n s w e r i s 185 let\quad x\quad be\quad the\quad quotient\quad when\quad multiplied\quad by\quad 2003\quad gives\quad 55555555.....5555\\ don't\quad know\quad the\quad number\quad of\quad fives.\\ in\quad order\quad to\quad obtain\quad first\quad 5:\quad 3\quad should\quad be\quad multiplied\quad by\quad 5,\\ so\quad unit\quad digit\quad is\quad 5.\\ 3\times 5\quad is\quad 15\quad therefore\quad in\quad order\quad to\quad make\quad tens\quad digit\quad ten\quad we\quad need\quad to\quad add\quad 4\quad to\quad the\\ ten's\quad digit\quad or\quad find\quad the\quad number\quad when\quad multiplied\quad by\quad 3\quad gives\quad unit\quad digit\quad 4.the\\ number\quad is\quad 8\quad so\quad the\quad ten's\quad digit\quad is\quad 8.\\ now\quad the\quad hundred's\quad place,\quad since\quad 2\quad is\quad already\quad is\quad hundred's\quad digit\quad in\quad order\quad to\quad get\\ 5\quad need\quad to\quad add\quad 3\quad or\quad find\quad the\quad number\quad when\quad multiplied\quad by\quad 3\quad gives\quad unit\quad digit\quad 3,hence\\ the\quad number\quad is\quad 1\quad and\quad hence\quad answer\quad is\quad \boxed{185}

You needn't LaTex your text. It helps make it more readable.

Nishant Sharma - 6 years, 11 months ago

Fie on five~ Nice logic!

Jayakumar Krishnan - 6 years, 11 months ago

Very nice thinking. Congratulations.

Niranjan Khanderia - 6 years, 6 months ago
Ar Agarwal
Oct 20, 2014

Here's a python 3.0+ script to achieve the same:

1
2
3
4
5
6
n=5555
while(True):
    if(n%2003==0):
        break
    n = n*10+5
print(n//2003%1000)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...