Too many 85's

What is the last three digits of

8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 85 ? \huge 85^{85^{85^{85^{85^{85^{85^{85^{85^{85}}}}}}}}}?

175 135 145 185 165 125 115 195

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 24, 2017

Relevant wiki: Euler's Theorem

Let N N be the number given in this problem. We are required to find N m o d 1000 N \bmod 1000 . Since gcd ( 85 , 1000 ) 1 \gcd (85,1000) \ne 1 , we have consider the factors 8 and 125 separately using Chinese remainder theorem .

We note that N 0 (mod 125) N \equiv 0 \text{ (mod 125)} N 125 n \implies N \equiv 125n . Now, we have:

N 8 5 8 5 a m o d ϕ ( 8 ) (mod 8) Since gcd ( 85 , 8 ) = 1 , Euler’s theorem applies. 8 5 8 5 a m o d 4 (mod 8) Euler’s totient function ϕ ( 8 ) = 4 8 5 1 5 (mod 8) 125 n 5 (mod 8) n 1 N 125 (mod 1000) \begin{aligned} N & \equiv 85^{\color{#3D99F6}85^a \bmod \phi(8)} \text{ (mod 8)} & \small \color{#3D99F6} \text{Since }\gcd(85,8) = 1 \text{, Euler's theorem applies.} \\ & \equiv 85^{\color{#3D99F6}85^a \bmod 4} \text{ (mod 8)} & \small \color{#3D99F6} \text{Euler's totient function }\phi (8) = 4 \\ & \equiv 85^1 \equiv 5 \text{ (mod 8)} \\ \implies 125n & \equiv 5 \text{ (mod 8)} \\ n & \equiv 1 \\ \implies N & \equiv \boxed{125} \text{ (mod 1000)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...