Too Many Nines

999 99 1001 number of 9 ’s 2 {\underbrace{999\ldots99}_{1001 \text{ number of } 9 \text{'s}}}^2

Find the sum of the digits of the number above


The answer is 9009.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Uahnbu Tran
Jun 4, 2015

99 2 2 = 9801 T h e s u m i s 9 + ( 8 + 1 ) = 2 × 9 999 3 2 = 998001 T h e s u m = 3 × 9 99...9 1001 2 T h e s u m = 9 × 1001 { \underbrace { 99 }_{ 2 } }^{ 2 }=9801\quad \rightarrow \quad The\quad sum\quad is\quad 9+(8+1)\quad =\quad 2\times 9\\ { \underbrace { 999 }_{ 3 } }^{ 2 }=998001\quad \rightarrow \quad The\quad sum\quad =\quad 3\times 9\\ { \underbrace { 99...9 }_{ 1001 } }^{ 2 }\quad \rightarrow \quad The\quad sum\quad =\quad 9\times 1001

Ramiel To-ong
Jun 5, 2015

it follows a cycle since the square of any number of nines will end up ( ( n - 1 )9x + 9 ), then 1000x9 + 9 = 9009

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...