∫ 0 π e x x 3 cos x d x
If the above integral can be expressed in the form − b a − d c e π + g f π e π − k h π j e π , where a , b , c , d , f , g , h , j and k are positive integers with g cd ( a , b ) = g cd ( c , d ) = g cd ( f , g ) = g cd ( h , k ) = 1 , and e is Euler's number, find a + b + c + d + f + g + h + j + k .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I'll be using
∫
e
x
(
f
(
x
)
+
f
′
(
x
)
)
=
e
x
f
(
x
)
+
C
to solve the integral.
Let
g
(
f
(
x
)
)
=
∫
e
x
(
f
(
x
)
+
f
′
(
x
)
)
d
x
=
e
x
f
(
x
)
+
C
g
(
x
3
cos
x
)
+
g
(
x
3
sin
x
)
=
∫
e
x
2
x
3
cos
x
+
e
x
3
x
2
(
cos
x
+
sin
x
)
d
x
=
e
x
x
3
(
cos
x
+
sin
x
)
+
C
We'll do the same process with terms involving
x
2
and
x
.
The final result is obtained as:
∫
2
e
x
x
3
cos
x
d
x
=
g
(
x
3
cos
x
)
+
g
(
x
3
sin
x
)
+
3
(
−
g
(
x
2
sin
x
)
+
g
(
x
sin
x
)
−
g
(
x
cos
x
)
+
g
(
cos
x
)
)
=
e
x
(
x
3
cos
x
+
x
3
sin
x
+
3
(
−
x
2
sin
x
+
x
sin
x
−
x
cos
x
+
cos
x
)
)
+
C
Ookay! Loved solving it, btw! :)
∫ 0 π e x x 3 cos x d x
But, since, cos x = ℜ ( e i x )
So, substituting this value in the original expression, and applying integration by parts once, we get:
ℜ ( ∫ 0 π e x x 3 e i x d x ) = ℜ ( ∫ 0 π e x ( 1 + i ) x 3 d x ) = ℜ { 1 + i π 3 e π ( 1 + i ) − 1 + i 3 ∫ 0 π x 2 e x ( 1 + i ) d x }
......and again:
ℜ { 1 + i π 3 e π ( 1 + i ) − ( 1 + i ) 2 3 π 2 e π ( 1 + i ) + ( 1 + i ) 2 6 ∫ 0 π x e x ( 1 + i ) d x }
.....and again: (Promise, this is the last one! :))
ℜ { 1 + i π 3 e π ( 1 + i ) − ( 1 + i ) 2 3 π 2 e π ( 1 + i ) + ( 1 + i ) 3 6 π e π ( 1 + i ) − ( 1 + i ) 4 6 [ e π ( 1 + i ) − 1 ] }
Now, putting e π i = − 1 and separating the real and complex terms:
ℜ { 2 π 3 e π ( − 1 ) ( 1 − i ) − 2 i 3 π 2 e π ( − 1 ) + 2 3 π e π ( 1 + i ) − 4 6 [ e π + 1 ] } = ℜ { 2 − π 3 e π + 2 3 π e π − 2 3 e π − 2 3 + i [ 2 π 3 e π − 2 3 π 2 e π + 2 3 π e π ] }
Since, we just need the real part, so our integral ends up as:
2 − π 3 e π + 2 3 π e π − 2 3 e π − 2 3
And, finally, comparing with the given variables: a = 3 , b = 2 , c = 3 , d = 2 , f = 3 , g = 2 , h = 1 , k = 2 , j = 3
So, a + b + c + d + f + g + h + k + j = 3 + 3 + 3 + 3 + 2 + 2 + 2 + 2 + 1 = 2 1
Phew! Thanks for bearing with me! :P
well done! I did the non- e i x method, maybe I'll try some day :)
Yeah, did the same and a nice question for sure!
Problem Loading...
Note Loading...
Set Loading...
Using Euler's identity as Abhineet Nayyar , but perhaps slightly easier.
∫ 0 π e x x 3 cos x d x = ℜ ∫ 0 π e x x 3 e i x d x = ℜ ∫ 0 π x 3 e ( 1 + i ) x d x Let z = ( 1 + i ) x ⇒ x = 1 + i z = ℜ ∫ 0 ( 1 + i ) π ( 1 + i ) 4 z 3 e z d z = ℜ ( − 4 1 ∫ 0 ( 1 + i ) π z 3 e z d z ) By integration by parts = − 4 1 ℜ [ z 3 e z − 3 z 2 e z + 6 z e z − 6 e z ] 0 ( 1 + i ) π = − 4 1 ℜ ( e ( 1 + i ) π [ ( 1 + i ) 3 π 3 − 3 ( 1 + i ) 2 π 2 + 6 ( 1 + i ) π − 6 ] + 6 ) = − 4 1 ℜ ( − e π [ ( − 2 + 2 i ) π 3 − 6 i π 2 + ( 6 + 6 i ) π − 6 ] + 6 ) = − 4 1 ( − e π [ − 2 π 3 + 6 π − 6 ] + 6 ) = − 2 3 − 2 3 e π + 2 3 e π π − 2 e π π 3
⇒ a + b + c + d + f + g + h + j + k = 3 + 2 + 3 + 2 + 3 + 2 + 1 + 3 + 2 = 2 1