Too many parts! (My fourteenth integral problem)

Calculus Level 5

0 π e x x 3 cos x d x \large \displaystyle \int_{0}^{\pi} e^{x} x^{3} \cos x \, dx

If the above integral can be expressed in the form a b c e π d + f π e π g h π j e π k , -\dfrac{a}{b} - \dfrac{c e^{\pi}}{d} + \dfrac{f\pi e^{\pi}}{g} - \dfrac{h \pi^{j} e^{\pi}}{k}, where a , b , c , d , f , g , h , j a, b, c, d, f, g, h, j and k k are positive integers with gcd ( a , b ) = gcd ( c , d ) = gcd ( f , g ) = gcd ( h , k ) = 1 \gcd(a, b) = \gcd(c, d) = \gcd(f, g) = \gcd (h, k) = 1 , and e e is Euler's number, find a + b + c + d + f + g + h + j + k a+b+c+d+f+g+h+j+k .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 16, 2016

Using Euler's identity as Abhineet Nayyar , but perhaps slightly easier.

0 π e x x 3 cos x d x = 0 π e x x 3 e i x d x = 0 π x 3 e ( 1 + i ) x d x Let z = ( 1 + i ) x x = z 1 + i = 0 ( 1 + i ) π z 3 e z ( 1 + i ) 4 d z = ( 1 4 0 ( 1 + i ) π z 3 e z d z ) By integration by parts = 1 4 [ z 3 e z 3 z 2 e z + 6 z e z 6 e z ] 0 ( 1 + i ) π = 1 4 ( e ( 1 + i ) π [ ( 1 + i ) 3 π 3 3 ( 1 + i ) 2 π 2 + 6 ( 1 + i ) π 6 ] + 6 ) = 1 4 ( e π [ ( 2 + 2 i ) π 3 6 i π 2 + ( 6 + 6 i ) π 6 ] + 6 ) = 1 4 ( e π [ 2 π 3 + 6 π 6 ] + 6 ) = 3 2 3 e π 2 + 3 e π π 2 e π π 3 2 \begin{aligned} \int_0^\pi e^x x^3 \cos x \space dx & = \Re \int_0^\pi e^x x^3 e^{ix} \space dx \\ & = \Re \int_0^\pi x^3 e^{\color{#3D99F6}{(1+i)x}} \space dx \quad \quad \small \color{#3D99F6}{\text{Let } z = (1+i)x \space \Rightarrow x = \frac{z}{1+i}} \\ & = \Re \int_0^{(1+i)\pi} \frac{\color{#3D99F6}{z}^3 e^{\color{#3D99F6}{z}}} {(1+i)^4} \space d\color{#3D99F6}{z} \\ & = \Re \left(- \frac{1}{4} \int_0^{(1+i)\pi} z^3e^z \space dz \right) \quad \quad \small \color{#3D99F6}{\text{By integration by parts}} \\ & = - \frac{1}{4} \Re \left[z^3e^z - 3z^2e^z + 6ze^z - 6e^z \right]_0^{(1+i)\pi} \\ & = - \frac{1}{4} \Re \left(e^{(1+i)\pi}[(1+i)^3\pi^3 - 3(1+i)^2\pi^2 + 6(1+i)\pi -6] + 6 \right) \\ & = - \frac{1}{4} \Re \left(-e^\pi[(-2+2i)\pi^3 - 6i\pi^2 + (6+6i)\pi -6] + 6 \right) \\ & = - \frac{1}{4} \left(-e^\pi[-2\pi^3 + 6\pi -6] + 6 \right) \\ & = - \frac{3}{2} - \frac{3e^\pi}{2} + \frac{3e^\pi\pi}{2} - \frac{e^\pi\pi^3}{2} \end{aligned}

a + b + c + d + f + g + h + j + k = 3 + 2 + 3 + 2 + 3 + 2 + 1 + 3 + 2 = 21 \Rightarrow a+b+c+d+f+g+h+j+k = 3+2+3+2+3+2+1+3+2 = \boxed{21}

Shaurya Gupta
Feb 16, 2016

I'll be using e x ( f ( x ) + f ( x ) ) = e x f ( x ) + C \int{e^x(f(x)+f'(x))} = e^xf(x)+C to solve the integral.
Let g ( f ( x ) ) = e x ( f ( x ) + f ( x ) ) d x = e x f ( x ) + C g(f(x)) = \int e^x(f(x)+f'(x)) dx = e^xf(x)+C g ( x 3 cos x ) + g ( x 3 sin x ) = e x 2 x 3 cos x + e x 3 x 2 ( cos x + sin x ) d x = e x x 3 ( cos x + sin x ) + C g(x^3\cos x)+g(x^3\sin x) = \int \color{#3D99F6}{e^x2x^3\cos x} + \color{#D61F06}{e^x3x^2(\cos x+\sin x)} dx = e^xx^3(\cos x+\sin x) + C We'll do the same process with terms involving x 2 and x x^2 \text{ and } x .
The final result is obtained as:
2 e x x 3 cos x d x = g ( x 3 cos x ) + g ( x 3 sin x ) + 3 ( g ( x 2 sin x ) + g ( x sin x ) g ( x cos x ) + g ( cos x ) ) = e x ( x 3 cos x + x 3 sin x + 3 ( x 2 sin x + x sin x x cos x + cos x ) ) + C \int \color{#3D99F6}{2e^xx^3\cos x}dx = \color{#20A900}{g(x^3\cos x) + g(x^3 \sin x)} + \color{#624F41}{3(-g(x^2\sin x)+g(x\sin x)-g(x\cos x)+g(\cos x))} \\= e^x(\color{#20A900}{x^3\cos x + x^3 \sin x} + \color{#624F41}{3(-x^2\sin x+x\sin x-x\cos x+\cos x)})+ C


Ookay! Loved solving it, btw! :)

0 π e x x 3 cos x d x \int _{ 0 }^{ \pi }{ { e }^{ x }{ x }^{ 3 }\cos { x } dx }

But, since, cos x = ( e i x ) \cos { x } = \Re ({ e }^{ ix })

So, substituting this value in the original expression, and applying integration by parts once, we get:

( 0 π e x x 3 e i x d x ) = ( 0 π e x ( 1 + i ) x 3 d x ) = { π 3 e π ( 1 + i ) 1 + i 3 1 + i 0 π x 2 e x ( 1 + i ) d x } \quad \quad \Re (\int _{ 0 }^{ \pi }{ { e }^{ x }{ x }^{ 3 }{ e }^{ ix }dx } )\\ =\quad \Re (\int _{ 0 }^{ \pi }{ { e }^{ x(1+i) }{ x }^{ 3 }dx } )\\ =\quad \Re \{ \frac { { \pi }^{ 3 }{ e }^{ \pi (1+i) } }{ 1+i } -\frac { 3 }{ 1+i } \int _{ 0 }^{ \pi }{ { x }^{ 2 } } { e }^{ x(1+i) }dx\}

......and again:

{ π 3 e π ( 1 + i ) 1 + i 3 π 2 e π ( 1 + i ) ( 1 + i ) 2 + 6 ( 1 + i ) 2 0 π x e x ( 1 + i ) d x } \Re \{ \frac { { \pi }^{ 3 }{ e }^{ \pi (1+i) } }{ 1+i } -\frac { 3{ \pi }^{ 2 }{ e }^{ \pi (1+i) } }{ { (1+i) }^{ 2 } } +\frac { 6 }{ { (1+i) }^{ 2 } } \int _{ 0 }^{ \pi }{ { x } } { e }^{ x(1+i) }dx\}

.....and again: (Promise, this is the last one! :))

{ π 3 e π ( 1 + i ) 1 + i 3 π 2 e π ( 1 + i ) ( 1 + i ) 2 + 6 π e π ( 1 + i ) ( 1 + i ) 3 6 [ e π ( 1 + i ) 1 ] ( 1 + i ) 4 } \Re \{ \frac { { \pi }^{ 3 }{ e }^{ \pi (1+i) } }{ 1+i } -\frac { 3{ \pi }^{ 2 }{ e }^{ \pi (1+i) } }{ { (1+i) }^{ 2 } } +\frac { 6\pi { e }^{ \pi (1+i) } }{ { (1+i) }^{ 3 } } -\frac { 6[{ e }^{ \pi (1+i) }-1] }{ { (1+i) }^{ 4 } } \}

Now, putting e π i = 1 { e }^{ \pi i }=-1 and separating the real and complex terms:

{ π 3 e π ( 1 ) ( 1 i ) 2 3 π 2 e π ( 1 ) 2 i + 3 π e π ( 1 + i ) 2 6 [ e π + 1 ] 4 } = { π 3 e π 2 + 3 π e π 2 3 e π 2 3 2 + i [ π 3 e π 2 3 π 2 e π 2 + 3 π e π 2 ] } \quad \quad \Re \{ \frac { { \pi }^{ 3 }{ e }^{ \pi }(-1)(1-i) }{ 2 } -\frac { 3{ \pi }^{ 2 }{ e }^{ \pi }(-1) }{ 2i } +\frac { 3\pi { e }^{ \pi }(1+i) }{ 2 } -\frac { 6[{ e }^{ \pi }+1] }{ 4 } \} \\ =\quad \Re \{ \frac { -{ \pi }^{ 3 }{ e }^{ \pi } }{ 2 } +\frac { 3\pi { e }^{ \pi } }{ 2 } -\frac { 3{ e }^{ \pi } }{ 2 } -\frac { 3 }{ 2 } +i[\frac { { \pi }^{ 3 }{ e }^{ \pi } }{ 2 } -\frac { 3{ \pi }^{ 2 }{ e }^{ \pi } }{ 2 } +\frac { 3\pi { e }^{ \pi } }{ 2 } ]\}

Since, we just need the real part, so our integral ends up as:

π 3 e π 2 + 3 π e π 2 3 e π 2 3 2 \frac { -{ \pi }^{ 3 }{ e }^{ \pi } }{ 2 } +\frac { 3\pi { e }^{ \pi } }{ 2 } -\frac { 3{ e }^{ \pi } }{ 2 } -\frac { 3 }{ 2 }

And, finally, comparing with the given variables: a = 3 , b = 2 , c = 3 , d = 2 , f = 3 , g = 2 , h = 1 , k = 2 , j = 3 a=3, b=2, c=3, d=2, f=3, g=2, h=1, k=2, j=3

So, a + b + c + d + f + g + h + k + j = 3 + 3 + 3 + 3 + 2 + 2 + 2 + 2 + 1 = 21 a+b+c+d+f+g+h+k+j = 3+3+3+3+2+2+2+2+1 = 21

Phew! Thanks for bearing with me! :P

well done! I did the non- e i x e^{ix} method, maybe I'll try some day :)

Hobart Pao - 5 years, 4 months ago

Log in to reply

Thanks! Awesome question!! :)

A Former Brilliant Member - 5 years, 3 months ago

Yeah, did the same and a nice question for sure!

raghav yadav - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...