Too much pi

Calculus Level 4

lim n [ n 2 ( 2 π 2 n π 3 n π 4 n ) ] = ln A B \large \lim_{n\to \infty }\left[ \dfrac{n}{2} \left( 2\sqrt[n]{\dfrac{\pi }{2} } -\sqrt[n]{\dfrac{\pi }{3} } -\sqrt[n]{\dfrac{\pi }{4} } \right) \right] =\dfrac{\ln A }{B}

If the equation above holds true for positive integers A A and B B , such that A A is minimized, find A + B A+B .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 15, 2016

L = lim n [ n 2 ( 2 π 2 n π 3 n π 4 n ) ] = lim n 2 ( π 2 ) 1 n ( π 3 ) 1 n ( π 4 ) 1 n 2 n Let x = 1 n . = lim x 0 2 ( π 2 ) x ( π 3 ) x ( π 4 ) x 2 x This is a 0/0 case and L’H o ˆ pital’s rule applies. = lim x 0 2 ln ( π 2 ) ( π 2 ) x ln ( π 3 ) ( π 3 ) x ln ( π 4 ) ( π 4 ) x 2 Differentiate up and down w.r.t. x . = 1 2 ( 2 ln ( π 2 ) ln ( π 3 ) ln ( π 4 ) ) = 1 2 ( ln ( π 2 4 × 3 π × 4 π ) ) = ln 3 2 \begin{aligned} \mathscr L & = \lim_{n \to \infty} \left[\frac n2 \left(2 \sqrt [n] {\frac \pi 2} - \sqrt [n] {\frac \pi 3} - \sqrt [n] {\frac \pi 4} \right) \right] \\ & = \lim_{n \to \infty} \frac {2 \left(\frac \pi 2 \right)^\frac 1n - \left(\frac \pi 3 \right)^\frac 1n - \left(\frac \pi 4 \right)^\frac 1n }{\frac 2n} & \small \color{#3D99F6}{\text{Let }x = \frac 1n.} \\ & = \lim_{x \to 0} \frac {2 \left(\frac \pi 2 \right)^x - \left(\frac \pi 3 \right)^x - \left(\frac \pi 4 \right)^x}{2x} & \small \color{#3D99F6}{\text{This is a 0/0 case and L'Hôpital's rule applies.}} \\ & = \lim_{x \to 0} \frac {2 \ln \left(\frac \pi 2 \right) \left(\frac \pi 2 \right)^x - \ln \left(\frac \pi 3 \right) \left(\frac \pi 3 \right)^x - \ln \left(\frac \pi 4 \right) \left(\frac \pi 4 \right)^x}{2} & \small \color{#3D99F6}{\text{Differentiate up and down w.r.t. }x.} \\ & = \frac 12 \left( 2 \ln \left(\frac \pi 2 \right) - \ln \left(\frac \pi 3 \right) - \ln \left(\frac \pi 4 \right) \right) \\ & = \frac 12 \left(\ln \left( \frac {\pi^2}4 \times \frac 3 \pi \times \frac 4 \pi \right) \right) \\ & = \frac {\ln 3}2 \end{aligned}

A + B = 3 + 2 = 5 \implies A+B = 3+2 = \boxed{5}

Clever use of substitution.

James Wilson - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...