Too many things to add!

Calculus Level 5

k = 1 ( 2 n = 1 1 n 2 + k n ) 2 = A B π C \large \sum _{ k=1 }^{ \infty }{ { \left( 2\sum _{ n=1 }^{ \infty }{ \dfrac { 1 }{ { n }^{ 2 }+kn } } \right) }^{ 2 } } =\dfrac { A }{ B } { \pi }^{ C }

The equation above holds true for positive integers A , B A,B and C C with A , B A,B coprime. Find A + B + C A+B+C .


The answer is 111.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 26, 2016

Since n = 1 1 n 2 + k n = 1 k n = 1 ( 1 n 1 n + k ) = H k k \sum_{n=1}^\infty \frac{1}{n^2 + kn} \; =\; \frac{1}{k}\sum_{n=1}^\infty \left(\frac{1}{n} - \frac{1}{n+k}\right) \; = \; \frac{H_k}{k} we need to evaluate 4 k = 1 H k 2 k 2 . 4\sum_{k=1}^\infty \frac{H_k^2}{k^2} \;. Now k = 1 H k 2 k 2 = k = 1 1 k 2 ( H k 1 + k 1 ) 2 = k = 1 H k 2 ( k + 1 ) 2 + 2 k = 1 H k ( k + 1 ) 3 + k = 1 1 k 4 = a > b , c 1 a 2 b c + 2 a > b 1 a 3 b + ζ ( 4 ) = 2 a > b > c 1 a 2 b c + a > b 1 a 2 b 2 + 2 a > b 1 a 3 b + ζ ( 4 ) = 2 ζ ( 2 , 1 , 1 ) + ζ ( 2 , 2 ) + 2 ζ ( 3 , 1 ) + ζ ( 4 ) = 17 360 π 4 , \begin{array}{rcl} \displaystyle \sum_{k=1}^\infty \frac{H_k^2}{k^2} & = & \displaystyle \sum_{k=1}^\infty \frac{1}{k^2}\big(H_{k-1} + k^{-1}\big)^2 \\ & = & \displaystyle \sum_{k=1}^\infty \frac{H_k^2}{(k+1)^2} + 2\sum_{k=1}^\infty \frac{H_k}{(k+1)^3} + \sum_{k=1}^\infty \frac{1}{k^4} \\ & = & \displaystyle \sum_{a > b,c} \frac{1}{a^2bc} + 2\sum_{a>b}\frac{1}{a^3b} + \zeta(4) \\ & = & \displaystyle 2\sum_{a>b>c} \frac{1}{a^2bc} + \sum_{a>b}\frac{1}{a^2b^2} + 2\sum_{a>b} \frac{1}{a^3b} + \zeta(4) \\ & = & 2\zeta(2,1,1) + \zeta(2,2) + 2\zeta(3,1) + \zeta(4) \; = \; \tfrac{17}{360}\pi^4\;, \end{array} and so the sum is equal to 17 90 π 4 \tfrac{17}{90}\pi^4 , making the answer 17 + 90 + 4 = 111 17 + 90 + 4 = \boxed{111} .

How did you evaluate the zeta function at the end?

Jacob Swenberg - 4 years, 11 months ago

can you explain the last step?

Srikanth Tupurani - 2 years, 10 months ago

Log in to reply

You need to check out information about multiple zeta functions, Euler sums and Tornheim sums. That said, some of this step is quite easy. For example, 2 ζ ( 2 , 2 ) + ζ ( 4 ) = ζ ( 2 ) 2 2\zeta(2,2)+\zeta(4) \;=\; \zeta(2)^2 Which gives ζ ( 2 , 2 ) = 1 120 π 4 \zeta(2,2)=\tfrac{1}{120}\pi^4

Mark Hennings - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...