Too many variables?

S = k = 8 35 k ( k 1 ) ( k 2 ) ( k 3 ) ( k 4 ) ( k 5 ) ( k 6 ) \displaystyle S = \sum_{k=8}^{35} k(k-1)(k-2)(k-3)(k-4)(k-5)(k-6)

Given that the sum above can be expressed as a ! × ( b × c × d × e × f × g × h × i j ! 1 ) a! \times \left( \dfrac{b \times c \times d \times e \times f \times g \times h \times i}{j!} - 1 \right)

where a , b , c , d , e , f , g , h , i a,b,c,d,e,f,g,h,i are all positive integers with j j is the cube of a prime number and b , c , d , e , f , g , h , i b,c,d,e,f,g,h,i are consecutive integers.

Find a + b + c + d + e + f + g + h + i + j a + b + c + d + e + f +g + h + i + j .

Bonus : Generalize the sum,
m n ( k ) ( k 1 ) ( k 2 ) ( k ( r 1 ) ) \displaystyle \sum_{m}^{n} (k)(k-1)(k-2)\cdots(k-(r-1)) such that m > r m > r .


The answer is 275.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = m n ( k ) ( k 1 ) ( k 2 ) . . . . . . ( k ( r 1 ) ) \displaystyle S = \sum_{m}^{n} (k)(k-1)(k-2)......(k-(r-1))
Multiplying and dividing by r ! ( k r ) ! r!(k-r)!
S = r ! × m n k ! r ! × ( k r ) ! \displaystyle S = r! \times \sum_{m}^{n} \dfrac{k!}{r! \times (k-r)!}
S = r ! × m n ( k r ) \displaystyle S = r! \times \sum_{m}^{n} {k \choose r}
S = r ! × ( r n ( k r ) r m 1 ( k r ) ) \displaystyle S = r! \times \left ( \sum_{r}^{n}{k \choose r} - \sum_{r}^{m-1}{k \choose r}\right)


Using the Hockey stick identity ,

r n ( k r ) = ( n + 1 r + 1 ) \displaystyle \sum_{r}^{n} {k \choose r} = {n + 1 \choose r+1}

S = r ! × ( ( n + 1 r + 1 ) ( m r + 1 ) ) \displaystyle \therefore S = r! \times \left( {n+1 \choose r+1} - {m \choose r+1} \right)

For the given sum,
n = 35 n = 35 , m = 8 m = 8 , r = 7 r = 7

S = 7 ! × ( ( 35 + 1 7 + 1 ) ( 8 7 + 1 ) ) \displaystyle \therefore S = 7! \times \left( {35 + 1 \choose 7 + 1} - {8 \choose 7 + 1} \right)
S = 7 ! × ( ( 36 8 ) ( 8 8 ) ) \displaystyle \therefore S = 7! \times \left( {36 \choose 8} - {8 \choose 8} \right)
S = 7 ! × ( 29 × 30 × 31 × 32 × 33 × 34 × 35 × 36 8 ! 1 ) \displaystyle \therefore S = 7! \times \left( \dfrac{29 \times 30 \times 31 \times 32 \times 33 \times 34 \times 35 \times 36}{8!} - 1 \right)

Comparing,
a = 7 , b = 29 , c = 30 , d = 31 , e = 32 , f = 33 , g = 34 , h = 35 , i = 36 , j = 8 a =7, b = 29, c = 30, d = 31, e = 32, f = 33, g = 34, h = 35, i = 36 , j = 8

a + b + c + d + e + f + g + h + i + j = 7 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 8 = 275 \displaystyle \therefore a + b + c + d + e + f + g + h + i + j = 7 + 29 + 30 + 31 + 32 + 33 +34 + 35 + 36 + 8 = 275

Prakhar Bindal
Jan 16, 2016

It is simply a telescoping series ! . Multiply and divide by 8 and write 8 in the numerator as (k+1)- (k-7) . its done!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...