Literally Too Many Variables!

Algebra Level 2

p 2 a 2 + q 2 b 2 + r 2 c 2 \large \dfrac{p^2}{a^2}+\dfrac{q^2}{b^2}+\dfrac{r^2}{c^2}

If p a + q b + r c = 1 \dfrac{p}{a}+\dfrac{q}{b}+\dfrac{r}{c}=1 and a p + b q + c r = 0 \dfrac{a}{p}+\dfrac{b}{q}+\dfrac{c}{r}=0 , then compute the expression above.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush G Rai
Jun 19, 2016

Relevant wiki: Algebraic Identities

Writing x = p a , y = q b a n d z = r c , x=\frac{p}{a},y=\frac{q}{b} and z=\frac{r}{c}, we are given that x + y + z = 1 x+y+z=1 and 1 x + 1 y + 1 z = 0. \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0. The second equation implies y z + z x + x y = 0. yz+zx+xy=0. Now, x 2 + y 2 + z 2 = ( x + y + z ) 2 2 ( y z + z x + x y ) = 1 2 2 × 0 = 1. x^2+y^2+z^2={(x+y+z)}^2-2(yz+zx+xy)=1^2-2\times 0=1.
i.e. p 2 a 2 + q 2 b 2 + r 2 c 2 = 1 . \frac{p^2}{a^2}+\frac{q^2}{b^2}+\frac{r^2}{c^2}=\boxed 1.

Same solution.

A Former Brilliant Member - 4 years, 12 months ago
Hung Woei Neoh
Jun 20, 2016

p 2 a 2 + q 2 b 2 + r 2 c 2 = ( p a + q b + r c ) 2 2 ( p q a b + p r a c + q r b c ) = ( p a + q b + r c ) 2 2 p q r ( 1 a b r + 1 a c q + 1 b c p ) = ( p a + q b + r c ) 2 2 p q r a b c ( c r + b q + a p ) = ( 1 ) 2 2 p q r a b c ( 0 ) = 1 \dfrac{p^2}{a^2} + \dfrac{q^2}{b^2} + \dfrac{r^2}{c^2}\\ =\left(\dfrac{p}{a} + \dfrac{q}{b} + \dfrac{r}{c}\right)^2 - 2\left(\dfrac{pq}{ab} + \dfrac{pr}{ac} + \dfrac{qr}{bc}\right)\\ =\left(\dfrac{p}{a} + \dfrac{q}{b} + \dfrac{r}{c}\right)^2 - 2pqr\left(\dfrac{1}{abr} + \dfrac{1}{acq} + \dfrac{1}{bcp}\right)\\ =\left(\dfrac{p}{a} + \dfrac{q}{b} + \dfrac{r}{c}\right)^2 - 2\dfrac{pqr}{abc}\left(\dfrac{c}{r} + \dfrac{b}{q} + \dfrac{a}{p}\right)\\ =(1)^2 - 2\dfrac{pqr}{abc}(0)\\ =\boxed{1}

good approach...+1

Ayush G Rai - 4 years, 12 months ago

Did the same way ..

sanyam goel - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...