An algebra problem by Nahom Assefa

Algebra Level 3

{ x + y + z = 1 x 2 + y 2 + z 2 = 2 x 3 + y 3 + z 3 = 3 x 5 + y 5 + z 5 = ? \large \begin{cases} \begin{aligned} x\ +\ y\ +\ z & = 1 \\ x^2+y^2+z^2 & = 2 \\ x^3+y^3+z^3 & = 3 \\ x^5+y^5+z^5 & = \ ? \end{aligned} \end{cases}


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let P n = x n + y n + z n P_n = x^n+y^n+z^n , where n n is a positive integer, and S 1 = x + y + x = P 1 S_1 = x+y+x = P_1 , S 2 = x y + y z + z x S_2 = xy+yz+zx , and S 3 = x y z S_3 = xyz . By Newton's identities or Newton's sums , we have:

P 1 = S 1 = 1 Given P 2 = S 1 P 1 2 S 2 = 1 2 S 2 = 2 S 2 = 1 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 2 + 1 2 + 3 S 3 = 3 S 3 = 1 6 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 3 + 1 + 1 6 = 25 6 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 = 25 6 + 3 2 + 1 3 = 6 \begin{aligned} P_1 & = S_1 = 1 & \small \blue{\text{Given}} \\ P_2 & = S_1P_1 - 2S_2 = 1-2S_2 = 2 & \small \blue{\implies S_2 = -\frac 12} \\ P_3 & = S_1P_2 - S_2P_1 + 3S_3 = 2+\frac 12 + 3S_3 = 3 & \small \blue{\implies S_3 = \frac 16} \\ P_4 & = S_1P_3 - S_2P_2 + S_3P_1 = 3+1 + \frac 16 = \frac {25}6 \\ P_5 & = S_1P_4 - S_2P_3 + S_3P_2 = \frac {25}6+\frac 32 + \frac 13 = \boxed 6 \end{aligned}

From the given equations we get x y + y z + z x = 1 2 xy+yz+zx=-\dfrac{1}{2} , x y z = 1 6 xyz=\dfrac{1}{6} . So x , y , z x, y, z are the roots of the equation X 3 X 2 1 2 X 1 6 = 0 X^3-X^2-\dfrac{1}{2}X-\dfrac{1}{6}=0 . Therefore x 4 + y 4 + z 4 = x 3 + y 3 + z 3 + 1 2 ( x 2 + y 2 + z 2 ) + 1 6 ( x + y + z ) = 3 + 1 + 1 6 = 25 6 x^4+y^4+z^4=x^3+y^3+z^3+\dfrac{1}{2}(x^2+y^2+z^2)+\dfrac{1}{6}(x+y+z)=3+1+\dfrac{1}{6}=\dfrac{25}{6} and x 5 + y 5 + z 5 = x 4 + y 4 + z 4 + 1 2 ( x 3 + y 3 + z 3 ) + 1 6 ( x 2 + y 2 + z 2 ) = 25 6 + 3 2 + 2 6 = 25 + 9 + 2 6 = 6 x^5+y^5+z^5=x^4+y^4+z^4+\dfrac{1}{2}(x^3+y^3+z^3)+\dfrac{1}{6}(x^2+y^2+z^2)=\dfrac{25}{6}+\dfrac{3}{2}+\dfrac{2}{6}=\dfrac{25+9+2}{6}=\boxed 6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...