The below equation is true for all n , (All a i are real)
a 1 + a 2 − 1 + a 3 − 2 + . . . a n − ( n − 1 ) = 2 1 ( a 1 + a 2 + a 3 . . . + a n ) − 4 n ( n − 3 )
Find the value of a 5 0 − a 5 1 + a 5 2 − a 5 3 . . . + a 1 0 0
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thank you, sir, for providing a theoretical solution to this problem.
Check the value of a 1 by putting n = 1
a 1 = 1
Using this and n = 2 , check the value of a 2 . It comes out to be 2.
Same way, if you check all the other values,
a 3 = 3
a 4 = 4 ...and so on.
Hence, a n = n , making the required sum 1 0 0 + 2 5 ( − 1 ) = 7 5
(This solution was by complete experimentation, i.e. just finding out values of a few a i and making a conclusion, I have no idea how to do this theoretically)
Problem Loading...
Note Loading...
Set Loading...
Substituting n = k − 1 into the given equation yields
a 1 + a 2 − 1 + a 3 − 2 + . . . + a k − 1 − ( k − 2 ) = 2 a 1 + a 2 + a 3 + . . . + a k − 1 − 4 ( k − 1 ) ( k − 4 )
Substituting n = k into the given equation yields
a 1 + a 2 − 1 + a 3 − 2 + . . . + a k − ( k − 1 ) = 2 a 1 + a 2 + a 3 + . . . + a k − 4 k ( k − 3 )
Subtracting the first equation from the second equation yields
a k − ( k − 1 ) = 2 a k − 4 k ( k − 3 ) − ( k − 1 ) ( k − 4 )
2 a k − ( k − 1 ) = a k − ( k − 2 )
4 [ a k − ( k − 1 ) ] = a k 2 − 2 ( a k ) ( k − 2 ) + ( k 2 − 4 k + 4 )
a k 2 − 2 ( a k ) ( k ) + k 2 = 0
( a k − k ) 2 = 0
So a k = k .
Therefore, a 5 0 − a 5 1 + a 5 2 − a 5 3 + . . . + a 1 0 0 = ( 5 0 − 5 1 ) + ( 5 2 − 5 3 ) + ( 5 4 − 5 5 ) + . . . + ( 9 8 − 9 9 ) + 1 0 0 = 2 5 ( − 1 ) + 1 0 0 = 7 5 .