Top-notch

Algebra Level pending

The below equation is true for all n n , (All a i a_i are real)

a 1 + a 2 1 + a 3 2 + . . . a n ( n 1 ) = 1 2 ( a 1 + a 2 + a 3 . . . + a n ) n ( n 3 ) 4 \large \sqrt {a_1} + \sqrt {a_2-1} +\sqrt {a_3-2} + ...\sqrt {a_n-(n-1)}=\frac {1}{2}(a_1+a_2+a_3...+a_n) - \frac {n(n-3)}{4}

Find the value of a 50 a 51 + a 52 a 53 . . . + a 100 a_{50}-a_{51}+a_{52}-a_{53}...+a_{100}


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hugh Sir
Dec 5, 2018

Substituting n = k 1 n=k-1 into the given equation yields

a 1 + a 2 1 + a 3 2 + . . . + a k 1 ( k 2 ) = a 1 + a 2 + a 3 + . . . + a k 1 2 ( k 1 ) ( k 4 ) 4 \sqrt{a_1}+\sqrt{a_2 -1}+\sqrt{a_3-2}+...+\sqrt{a_{k-1}-(k-2)} = \dfrac{a_1+a_2+a_3+...+a_{k-1}}{2}-\dfrac{(k-1)(k-4)}{4}

Substituting n = k n=k into the given equation yields

a 1 + a 2 1 + a 3 2 + . . . + a k ( k 1 ) = a 1 + a 2 + a 3 + . . . + a k 2 k ( k 3 ) 4 \sqrt{a_1}+\sqrt{a_2 -1}+\sqrt{a_3-2}+...+\sqrt{a_{k}-(k-1)} = \dfrac{a_1+a_2+a_3+...+a_{k}}{2}-\dfrac{k(k-3)}{4}

Subtracting the first equation from the second equation yields

a k ( k 1 ) = a k 2 k ( k 3 ) ( k 1 ) ( k 4 ) 4 \sqrt{a_{k}-(k-1)} = \dfrac{a_{k}}{2}-\dfrac{k(k-3)-(k-1)(k-4)}{4}

2 a k ( k 1 ) = a k ( k 2 ) 2\sqrt{a_{k}-(k-1)} = a_{k} -(k-2)

4 [ a k ( k 1 ) ] = a k 2 2 ( a k ) ( k 2 ) + ( k 2 4 k + 4 ) 4[a_{k}-(k-1)] = a^{2}_{k} - 2(a_{k})(k-2) + (k^{2}-4k+4)

a k 2 2 ( a k ) ( k ) + k 2 = 0 a^{2}_{k} - 2(a_{k})(k) + k^{2} = 0

( a k k ) 2 = 0 (a_{k} - k)^{2} = 0

So a k = k a_{k} = k .

Therefore, a 50 a 51 + a 52 a 53 + . . . + a 100 = ( 50 51 ) + ( 52 53 ) + ( 54 55 ) + . . . + ( 98 99 ) + 100 = 25 ( 1 ) + 100 = 75 a_{50}-a_{51}+a_{52}-a_{53}+...+a_{100} = (50-51)+(52-53)+(54-55)+...+(98-99)+100 = 25(-1)+100 = 75 .

Thank you, sir, for providing a theoretical solution to this problem.

Parth Sankhe - 2 years, 6 months ago
Parth Sankhe
Dec 5, 2018

Check the value of a 1 a_1 by putting n = 1 n=1

a 1 = 1 a_1=1

Using this and n = 2 n=2 , check the value of a 2 a_2 . It comes out to be 2.

Same way, if you check all the other values,

a 3 = 3 a_3=3

a 4 = 4 a_4=4 ...and so on.

Hence, a n = n a_n=n , making the required sum 100 + 25 ( 1 ) = 75 100+25(-1)=75

(This solution was by complete experimentation, i.e. just finding out values of a few a i a_i and making a conclusion, I have no idea how to do this theoretically)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...