Touch 'n Go

Geometry Level 4

The line y = m x + 10 y=mx+10 is tangent to the curve x y + 7 7 y + 5 x + 7 5 x + 8 = 2 \large \dfrac{x-y+7}{7-y}+\dfrac{5x+7}{5x+8}=2 at the points ( x 1 , y 1 ) (x_1,y_1) and ( x 2 , y 2 ) (x_2,y_2) .

If x 1 × y 2 + x 2 × y 1 x_1 \times y_2+x_2 \times y_1 can be written as a b \large \frac{a}{b} for coprime positive integers a a and b , b, find a + b a+b .


The answer is 53.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Advait Nene
Jun 6, 2018

We can simplify the equation of the curve to one that we can deal with much easier.

x y + 7 7 y + 5 x + 7 5 x + 8 = 2 x 7 y + 1 + 5 x + 7 5 x + 8 = 2 x 7 y = 1 5 x + 7 5 x + 8 x 7 y = 1 5 x + 8 7 y = 5 x 2 + 8 x y = 5 x 2 8 x + 7 \begin{aligned} \frac{x-y+7}{7-y}+\frac{5x+7}{5x+8}&=2\\ \frac{x}{7-y}+1+\frac{5x+7}{5x+8}&=2\\ \frac{x}{7-y}=1-\frac{5x+7}{5x+8}&\\ \frac{x}{7-y}=\frac{1}{5x+8}&\\ 7-y=5x^{2}+8x&\\ y=-5x^{2}-8x+7&\\ \end{aligned}

The slope of the tangent line to this parabola is given by its derivative, 10 x 8 -10x-8 .

There must be two points on the parabola whose tangent lines have a y y -intercept of 10 10 .

Let's say that the x x -coordinate of one of these two points is a a .

m x + 10 = ( 10 a 8 ) x + 10 = 10 a x 8 x + 10 \begin{aligned} mx+10&=(-10a-8)x+10\\ &=-10ax-8x+10\\ \end{aligned}

10 a x 8 x + 10 = ( 10 a 8 ) ( x a ) + ( 5 a 2 8 a + 7 ) 10 a x 8 x + 10 = 10 a x + 10 a 2 8 x + 8 a 5 a 2 8 a + 7 5 a 2 = 3 a = 3 5 a = 3 5 \begin{aligned} -10ax-8x+10&=(-10a-8)(x-a)+(-5a^{2}-8a+7)\\ -10ax-8x+10&=-10ax+10a^{2}-8x+8a-5a^{2}-8a+7\\ 5a^{2}&=3\\ a&=\sqrt{\frac{3}{5}}\\ a&=-\sqrt{\frac{3}{5}}\\ \end{aligned}

At these two values of a a , the corresponding y y -values on the parabola are 8 3 5 + 4 -8\sqrt{\frac{3}{5}}+4 and 8 3 5 + 4 8\sqrt{\frac{3}{5}}+4 respectively.

This makes x 1 × y 2 + x 2 × y 1 = m n = 48 5 x_{1}\times y_{2}+x_{2}\times y_{1}=\frac{m}{n}=\frac{48}{5} , so m + n = 53 m+n=53 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...