Tough Derivative

Calculus Level 2

If x 2 + y 2 = 4 x^{2} + y^{2} = 4 , then find y y' .

y = y x y' = \frac{y}{x} y = x y y' = \frac{x}{y} y = y x y'= -\frac{y}{x} y = x y y' = -\frac{x}{y}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Colin Carmody
Mar 9, 2016

x 2 + y 2 = 4 x^{2} + y^{2} = 4

Then take the derivative of both sides.

2 x d x d x + 2 y d y d x = 0 2x\frac{dx}{dx} + 2y\frac{dy}{dx} = 0

x + y y , = 0 x + yy^{,} = 0

y y , = x yy^{,} = -x

y , = x y y^{,} = \boxed{-\frac{x}{y}}

Relevant wiki: Implicit Differentiation - Polynomials

We are given, x 2 + y 2 = 4 \displaystyle x^{2} + y^{2} = 4 .

Differentiating both sides with respect to x x , we have:

d d x x 2 + d d x y 2 = d d x 4 x 0 \implies \displaystyle \frac{d}{dx}x^{2} + \frac{d}{dx}y^{2} = \frac{d}{dx}4x^{0}

2 x + 2 y d y d x = 0 \implies \displaystyle 2x + 2y\frac{dy}{dx} = 0

x + y d y d x = 0 \implies \displaystyle x + y\frac{dy}{dx} = 0

d y d x = x y \implies \displaystyle \frac{dy}{dx} = -\frac{x}{y}

y = x y \implies \displaystyle \boxed{y' = -\frac{x}{y}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...