Tough equations no.1

Algebra Level 2

Solve for x


The answer is -5.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Sujoy Roy
Dec 23, 2014

x + 1 x + 2 + x + 8 x + 9 = x + 2 x + 3 + x + 7 x + 8 \frac{x+1}{x+2}+\frac{x+8}{x+9}=\frac{x+2}{x+3}+\frac{x+7}{x+8}

or, 1 x + 1 x + 2 + 1 x + 8 x + 9 = 1 x + 2 x + 3 + 1 x + 7 x + 8 1-\frac{x+1}{x+2}+1-\frac{x+8}{x+9}=1-\frac{x+2}{x+3}+1-\frac{x+7}{x+8}

or, 1 x + 2 + 1 x + 9 = 1 x + 3 + 1 x + 8 \frac{1}{x+2}+\frac{1}{x+9}=\frac{1}{x+3}+\frac{1}{x+8}

or, 1 x + 2 1 x + 3 = 1 x + 8 1 x + 9 \frac{1}{x+2}-\frac{1}{x+3}=\frac{1}{x+8}-\frac{1}{x+9}

or, 1 ( x + 2 ) ( x + 3 ) = 1 ( x + 8 ) ( x + 9 ) \frac{1}{(x+2)(x+3)}=\frac{1}{(x+8)(x+9)}

or, x 2 + 5 x + 6 = x 2 + 17 x + 72 x^2+5x+6=x^2+17x+72

or, 12 x = 66 12x=-66 or, x = 5.5 x=\boxed{-5.5}

Chew-Seong Cheong
Dec 31, 2014

x + 1 x + 2 + x + 8 x + 9 = x + 2 x + 3 + x + 7 x + 8 \displaystyle \frac {x+1}{x+2}+\frac {x+8}{x+9} = \frac {x+2}{x+3} +\frac {x+7}{x+8}

x + 2 1 x + 2 + x + 9 1 x + 9 = x + 3 1 x + 3 + x + 8 1 x + 8 \displaystyle \Rightarrow \frac {x+2-1}{x+2}+\frac {x+9-1}{x+9} = \frac {x+3-1}{x+3} +\frac {x+8-1}{x+8}

( 1 1 x + 2 ) + ( 1 1 x + 9 ) = ( 1 1 x + 3 ) + ( 1 1 x + 8 ) \displaystyle \Rightarrow \left( 1-\frac {1}{x+2} \right) + \left( 1-\frac {1}{x+9} \right) = \left( 1-\frac {1}{x+3} \right) + \left( 1-\frac {1}{x+8} \right)

1 x + 2 + 1 x + 9 = 1 x + 3 + 1 x + 8 \displaystyle \Rightarrow \frac {1}{x+2} + \frac {1}{x+9} = \frac {1}{x+3} + \frac {1}{x+8}

1 x + 2 1 x + 3 = 1 x + 8 1 x + 9 \displaystyle \Rightarrow \frac {1}{x+2} - \frac {1}{x+3} = \frac {1}{x+8} - \frac {1}{x+9}

x + 3 x 2 x 2 + 5 x + 6 = x + 9 x 8 x 2 + 17 x + 72 \displaystyle \Rightarrow \frac {x+3-x-2} {x^2+5x+6} = \frac {x+9-x-8} {x^2+17x+72}

x 2 + 5 x + 6 = x 2 + 17 x + 72 12 x = 66 x = 5.5 \displaystyle \Rightarrow x^2+5x+6 = x^2+17x+72 \quad \Rightarrow 12x = -66 \quad \Rightarrow x = \boxed{5.5}

How did you get from the original form to the 2nd one?

Maxis Jaisi - 6 years, 5 months ago

Log in to reply

Sorry, I have missed a step. I have added it in. See the solution now. Thanks.

Chew-Seong Cheong - 6 years, 5 months ago

Sujoy Roy's method is the best. However, the method below may help in other problems. Hence I give them.
X + 8 X + 9 X + 7 X + 8 = X + 2 X + 3 X + 1 X + 2 ( X + 8 ) 2 ( X + 9 ) ( X + 7 ) ( X + 9 ) ( X + 8 ) = ( X + 2 ) 2 ( X + 3 ) ( X + 1 ) ( X + 9 ) ( X + 8 ) 1 X 2 + 17 X + 72 ) = 1 X 2 + 5 X + 6 E q u a t i n g t h e r e c i p r o c a l s a n d s i m p l i f y i n g , w e g e t X = 5.5 O R \dfrac{X + 8}{X+ 9} -\dfrac{X + 7}{X+ 8} = \dfrac{X +2}{X+ 3} -\dfrac{X + 1}{X+ 2} \\ \therefore~\dfrac{(X + 8)^2 - (X + 9)(X + 7)}{(X+ 9)(X + 8)} =\dfrac{(X + 2)^2 - (X + 3)(X + 1)}{(X+ 9)(X + 8)} \\\implies \dfrac{1}{X^2+ 17X + 72)} = \dfrac{1}{X^2+ 5X + 6} \\ Equating ~the ~reciprocals~ and ~simplifying, we~ get~X=\boxed{- 5.5} \\ OR\\
X + 1 X + 2 + X + 8 X + 9 = X + 2 X + 3 + X + 7 X + 8 X 2 + 10 X + 9 + X 2 + 10 X + 16 X 2 + 11 X + 18 = X 2 + 10 X + 16 + X 2 + 10 X + 21 X 2 + 11 X + 24 \dfrac{X + 1}{X+ 2} +\dfrac{X + 8}{X+ 9} = \dfrac{X +2}{X+ 3} +\dfrac{X + 7}{X+ 8} \\ \therefore \dfrac{X^2+ 10X + 9~+~X^2+ 10X + 16}{X^2+11X +18} = \dfrac{X^2+10X +16~+~X^2+10X+ 21}{X^2+ 11X + 24} \\
2 ( X 2 + 10 X + 25 2 ) X 2 + 11 X + 18 = 2 ( X 2 + 10 X + 37 2 ) X 2 + 11 X + 24 2 ( X 2 + 10 X + 25 2 ) 2 ( X 2 + 10 X + 37 2 ) = X 2 + 11 X + 18 X 2 + 11 X + 24 1 12 2 X 2 + 10 X + 37 2 = 1 6 X 2 + 11 X + 24 E q u a t i n g t h e r e c i p r o c a l s a n d s i m p l i f y i n g , w e g e t X = 5.5 \implies \dfrac{2(X^2+ 10X + \dfrac{25}{2})}{X^2+11X +18} = \dfrac{2(X^2+10X + \dfrac{37}{2})}{X^2+ 11X + 24}\\ \implies \dfrac{2(X^2+ 10X + \dfrac{25}{2})}{2(X^2+10X + \dfrac{37}{2})} = \dfrac{X^2+11X +18}{X^2+ 11X + 24} \\ \implies 1~~- \dfrac{ \dfrac{12}{2}}{X^2+10X + \dfrac{37}{2}} = 1~~- \dfrac{6}{X^2+ 11X + 24} \\ Equating ~the ~reciprocals~ and ~simplifying, we~ get~X=\boxed{- 5.5}


Ryan Putong
Dec 31, 2014

Gamal Sultan
Dec 31, 2014

The equation can be put in the form

1 - 1/( x + 2 ) + 1 - 1/( x + 9) = 1 - 1/( x + 3 ) + 1 - 1/( x + 8 )

1/( x + 2 ) + 1/( x + 9) = 1/( x + 3 ) + 1/( x + 8 )

( 2 x + 11 )/( x + 2 )( x + 9 ) = (2 x + 11 )/( x+ 3 )( x + 8 )

Since ( x + 2 )( x + 9 ) not equal ( x+ 3 )( x + 8 )

Then

2 x + 11 = 0

x = - 5.5

William Chau
Jan 1, 2015

1-1/(x+2)+1-1/(x+9) = 1-1/(x+3)+1-1/(x+8),

1/(x+2)+1/(x+9) = 1/(x+3)+1/(x+8),

(2x+11)/(x^2+11x+18) = (2x+11)/(x^2+11x+24),

(2x+11)[(x^2+11x+24)-(x^2+11x+18)] = 0,

x = -11/2.

Anna Anant
Dec 31, 2014

Let x+5 = a a-4/a-3 + a+3/a+4 = a-3/a-2 + a+2/a+3 (a^2 - 16 + a^2 -9) / (a-3)(a+4) = (a^2 - 9 + a^2 -4) / (a-2)(a+3) ( 2 * a^2 - 25 ) / (a-3)(a+4) = ( 2 * a^2 - 13) / (a-2)(a+3) after cross multiplication and expansion of brackets , ( 2 * a^2 - 13 -12) / ( 2 * a^2 - 13) = a^2 + a - 12 / a^2 + a - 6 1 - [12 / ( 2 * a^2 - 13)] = 1 - [6 / a^2 + a - 6] -12 / ( 2 * a^2 - 13) = - 6 / a^2 + a - 6 -12 / ( 2 * a^2 - 13) = -12 / 2( a^2 + a - 6) 2 * a^2 - 13 = 2( a^2 + a - 6) 2 * a^2 - 13 = 2*a^2 + 2a - 12 -13 = 2a -12 a = -1/2 = 0.5 x = -5+a x = -5 - 0.5 = -5.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...