Tough Integrals to Crack

Calculus Level 5

2 0 π 6 ln 2 ( 2 sin x ) d x π 6 π 2 ln 2 ( 2 sin x ) d x = ? \large \dfrac{\displaystyle2\int_0^{\frac{\pi}{6}} \ln^2\left(2\sin{x}\right)\,dx}{\displaystyle\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \ln^2\left(2\sin{x}\right)\,dx}\,=\,?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 1, 2018

We note that 0 1 6 π ln 2 ( 2 sin x ) d x = 1 2 L s 3 ( 1 3 π ) 0 1 2 π ln 2 ( 2 sin x ) d x = 1 2 L s 3 ( π ) \int_0^{\frac16\pi}\ln^2(2\sin x)\,dx \; = \; -\tfrac12\mathrm{Ls}_3(\tfrac13\pi) \hspace{2cm} \int_0^{\frac12\pi}\ln^2(2\sin x)\,dx \; = \; -\tfrac12\mathrm{Ls}_3(\pi) where L s n \mathrm{Ls}_n is the log-sine integral L s n ( τ ) = 0 τ ln n 1 ( 2 sin 1 2 x ) d x \mathrm{Ls}_n(\tau) \; = \; -\int_0^\tau \ln^{n-1}\big(2\sin\tfrac12x\big)\,dx This paper shows, amongst much else, that L s 3 ( π ) = 1 12 π 3 L s 3 ( 1 3 π ) = 7 108 π 3 \mathrm{Ls}_3(\pi) \; = \; -\tfrac{1}{12}\pi^3 \hspace{2cm} \mathrm{Ls}_3(\tfrac13\pi) = -\tfrac{7}{108}\pi^3 which makes the desired ratio of integrals equal so 2 L s 3 ( 1 3 π ) L s 3 ( π ) L s 3 ( 1 3 π ) = 2 × 7 108 1 12 7 108 = 7 \frac{2\mathrm{Ls}_3(\frac13\pi)}{\mathrm{Ls}_3(\pi) - \mathrm{Ls}_3(\frac13\pi)} \; = \; \frac{2 \times \frac{7}{108}}{\frac{1}{12} - \frac{7}{108}} \; = \; \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...