Tough Integration

Level 2

Integrate this: -sin^2(x)/cos(x) dx

-tan(x) -cot(x) -sec(x)+cos(x) cos(x)+sex(x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Quest Keeper
Nov 22, 2020

sin 2 x cos x d x = ( 1 cos 2 x ) cos x d x = cos 2 x 1 cos x d x = ( cos x 1 cos x ) d x = ( cos x sec x ) d x \int \frac{-\sin^{2}x}{\cos x} \: dx \\ = \int \frac{-(1 - \cos^{2}x)}{\cos x} \: dx \\ = \int \frac {\cos^{2}x - 1}{\cos x} \: dx \\ = \int (\cos x - \frac {1}{\cos x}) \: dx \\ = \int (\cos x - \sec x) \: dx

As you can see, the solution provided is not the integration result, but rather the other form of the integrant. \text{As you can see, the solution provided is not the integration result, but rather the other form of the integrant.}

= ( cos x sec x ) d x = cos x d x sec x d x = sin x ln tan x + sec x + c = \int (\cos x - \sec x) \: dx \\ = \int \cos x \: dx - \int \sec x \: dx \\ = \sin x - \ln |\tan x + \sec x| + c

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...