Tough sigma

Algebra Level 3

n = 1 99 5 100 2 5 n + 5 100 = ? \large \sum_{n=1}^{99} \dfrac{5^{100}}{25^n + 5^{100}} = \ ?


The answer is 49.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ben Habeahan
Aug 19, 2015

n = 1 99 5 100 2 5 n + 5 100 = n = 1 99 2 5 50 2 5 n + 2 5 50 = n = 1 99 1 2 5 n 50 + 1 = n = 1 100 1 2 5 n 50 + 1 n = 100 100 1 2 5 n 50 + 1 = 1 2 5 49 + 1 + 1 2 5 48 + 1 + 1 2 5 47 + 1 + + 1 2 5 1 + 1 + 1 2 5 0 + 1 + 1 2 5 1 + 1 + + 1 2 5 47 + 1 + 1 2 5 48 + 1 + 1 2 5 49 + 1 + 1 2 5 50 + 1 1 2 5 50 + 1 ( ) \displaystyle \sum_{n=1}^{99} \frac{5^{100}}{25^{n}+5^{100}} = \displaystyle \sum_{n=1}^{99} \frac{25^{50}}{25^{n}+25^{50}} \\ = \displaystyle \sum_{n=1}^{99} \frac{1}{25^{n-50}+1} {\\} = \displaystyle \sum_{n=1}^{100} \frac{1}{25^{n-50}+1} - \displaystyle \sum_{n=100}^{100}\frac{1}{25^{n-50}+1} \\ = \frac{1}{25^{-49}+1}+\frac{1}{25^{-48}+1}+ \frac{1}{25^{-47}+1}{\\} + \dots+ \frac{1}{25^{-1}+1} + \frac{1}{25^{0}+1} +\frac{1}{25^{1}+1}{\\}+ \dots + \frac{1}{25^{47}+1}+ \frac{1}{25^{48}+1}+ \frac{1}{25^{49}+1} {\\}+ \frac{1}{25^{50}+1}-\frac{1}{25^{50}+1} (*) \\ use fact, 1 2 5 k + 1 + 1 2 5 k + 1 = 2 5 k + 1 + 2 5 k + 1 2 5 k + k + 2 5 k + 2 5 k + 1 = 1 \\ \frac{1}{25^{k}+1} + \frac{1}{25^{-k}+1} = \frac{25^{-k}+1+25^{k}+1}{25^{-k+k}+25^{-k}+25^{k}+1} =1 \\ so the result (*) will be 49 × 1 + 1 2 = 49.5 49 \times 1 + \frac{1}{2} = \boxed {49.5}

If anyone is confused, the extra 1/2 comes from 1 2 5 0 + 1 \frac{1}{25^0+1} term. Nice solution!

Scott Ripperda - 5 years, 9 months ago
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
for n=1 and n=99:

5**100 / (5**2 + 5**100) + 5**100 / (5**198 + 5**100)


5**98 / (1 + 5**98) + 1 / (5**98 + 1)
(5**98 + 1) / (5**98 + 1) = 1

There are 49 pairs
1*49 = 49

when n=50: (middle term)
the result will be 1/2

Answer: 49 + 1/2 --> 49

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...